With the recent merging of embedded package imports and the entry CLI package, it is now possible for users to build in mcl code into a single binary. This additional permission makes it explicitly clear that this is permitted to make it easier for those users. The condition is phrased so that the terms can be "patched" by the original author if it's necessary for the project. For example, if the name of the language (mcl) changes, has a differently named new version, someone finds a phrasing improvement or a legal loophole, or for some other reasonable circumstance. Now go write some beautiful embedded tools!
1097 lines
40 KiB
Go
1097 lines
40 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2024+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
// Additional permission under GNU GPL version 3 section 7
|
|
//
|
|
// If you modify this program, or any covered work, by linking or combining it
|
|
// with embedded mcl code and modules (and that the embedded mcl code and
|
|
// modules which link with this program, contain a copy of their source code in
|
|
// the authoritative form) containing parts covered by the terms of any other
|
|
// license, the licensors of this program grant you additional permission to
|
|
// convey the resulting work. Furthermore, the licensors of this program grant
|
|
// the original author, James Shubin, additional permission to update this
|
|
// additional permission if he deems it necessary to achieve the goals of this
|
|
// additional permission.
|
|
|
|
package interfaces
|
|
|
|
import (
|
|
"fmt"
|
|
"strings"
|
|
|
|
"github.com/purpleidea/mgmt/lang/types"
|
|
"github.com/purpleidea/mgmt/util/errwrap"
|
|
)
|
|
|
|
// Invariant represents a constraint that is described by the Expr's and Stmt's,
|
|
// and which is passed into the unification solver to describe what is known by
|
|
// the AST.
|
|
// XXX: add the extended methods into sub-interfaces since not each invariant
|
|
// uses them...
|
|
type Invariant interface {
|
|
// TODO: should we add any other methods to this type?
|
|
fmt.Stringer
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
ExprList() []Expr
|
|
|
|
// Matches returns whether an invariant matches the existing solution.
|
|
// If it is inconsistent, then it errors.
|
|
Matches(solved map[Expr]*types.Type) (bool, error)
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to
|
|
// get a solution with this invariant and the set of partials. In
|
|
// certain cases, it might not be able to determine that it's not
|
|
// possible, while simultaneously not being able to guarantee a possible
|
|
// solution either. In this situation, it should return nil, since this
|
|
// is used as a filtering mechanism, and the nil result of possible is
|
|
// preferred over eliminating a tricky, but possible one.
|
|
Possible(partials []Invariant) error
|
|
}
|
|
|
|
// EqualsInvariant is an invariant that symbolizes that the expression has a
|
|
// known type.
|
|
// TODO: is there a better name than EqualsInvariant
|
|
type EqualsInvariant struct {
|
|
Expr Expr
|
|
Type *types.Type
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualsInvariant) String() string {
|
|
return fmt.Sprintf("%p == %s", obj.Expr, obj.Type)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualsInvariant) ExprList() []Expr {
|
|
return []Expr{obj.Expr}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualsInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
typ, exists := solved[obj.Expr]
|
|
if !exists {
|
|
return false, nil
|
|
}
|
|
if err := typ.Cmp(obj.Type); err != nil {
|
|
return false, err
|
|
}
|
|
return true, nil
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
func (obj *EqualsInvariant) Possible(partials []Invariant) error {
|
|
// TODO: we could pass in a solver here
|
|
//set := []Invariant{}
|
|
//set = append(set, obj)
|
|
//set = append(set, partials...)
|
|
//_, err := SimpleInvariantSolver(set, ...)
|
|
//if err != nil {
|
|
// // being ambiguous doesn't guarantee that we're possible
|
|
// if err == ErrAmbiguous {
|
|
// return nil // might be possible, might not be...
|
|
// }
|
|
// return err
|
|
//}
|
|
|
|
// FIXME: This is not right because we want to know if the whole thing
|
|
// works together, and as a result, the above solver is better, however,
|
|
// the goal is to eliminate easy impossible solutions, so allow this!
|
|
// XXX: Double check this is logical.
|
|
solved := map[Expr]*types.Type{
|
|
obj.Expr: obj.Type,
|
|
}
|
|
for _, invar := range partials { // check each one
|
|
_, err := invar.Matches(solved)
|
|
if err != nil { // inconsistent, so it's not possible
|
|
return errwrap.Wrapf(err, "not possible")
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// EqualityInvariant is an invariant that symbolizes that the two expressions
|
|
// must have equivalent types.
|
|
// TODO: is there a better name than EqualityInvariant
|
|
type EqualityInvariant struct {
|
|
Expr1 Expr
|
|
Expr2 Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityInvariant) String() string {
|
|
return fmt.Sprintf("%p == %p", obj.Expr1, obj.Expr2)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityInvariant) ExprList() []Expr {
|
|
return []Expr{obj.Expr1, obj.Expr2}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1]
|
|
t2, exists2 := solved[obj.Expr2]
|
|
if !exists1 || !exists2 {
|
|
return false, nil // not matched yet
|
|
}
|
|
if err := t1.Cmp(t2); err != nil {
|
|
return false, err
|
|
}
|
|
|
|
return true, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
func (obj *EqualityInvariant) Possible(partials []Invariant) error {
|
|
// The idea here is that we look for the expression pointers in the list
|
|
// of partial invariants. It's only impossible if we (1) find both of
|
|
// them, and (2) that they relate to each other. The second part is
|
|
// harder.
|
|
var one, two bool
|
|
exprs := []Invariant{}
|
|
for _, x := range partials {
|
|
for _, y := range x.ExprList() { // []Expr
|
|
if y == obj.Expr1 {
|
|
one = true
|
|
exprs = append(exprs, x)
|
|
}
|
|
if y == obj.Expr2 {
|
|
two = true
|
|
exprs = append(exprs, x)
|
|
}
|
|
}
|
|
}
|
|
|
|
if !one || !two {
|
|
return nil // we're unconnected to anything, this is possible!
|
|
}
|
|
|
|
// we only need to check the connections in this case...
|
|
// let's keep this simple, and less perfect for now...
|
|
var typ *types.Type
|
|
for _, x := range exprs {
|
|
eq, ok := x.(*EqualsInvariant)
|
|
if !ok {
|
|
// XXX: add support for other kinds in the future...
|
|
continue
|
|
}
|
|
|
|
if typ != nil {
|
|
if err := typ.Cmp(eq.Type); err != nil {
|
|
// we found proof it's not possible
|
|
return errwrap.Wrapf(err, "not possible")
|
|
}
|
|
}
|
|
|
|
typ = eq.Type // store for next type
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// EqualityInvariantList is an invariant that symbolizes that all the
|
|
// expressions listed must have equivalent types.
|
|
type EqualityInvariantList struct {
|
|
Exprs []Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityInvariantList) String() string {
|
|
var a []string
|
|
for _, x := range obj.Exprs {
|
|
a = append(a, fmt.Sprintf("%p", x))
|
|
}
|
|
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityInvariantList) ExprList() []Expr {
|
|
return obj.Exprs
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityInvariantList) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
found := true // assume true
|
|
var typ *types.Type
|
|
for _, x := range obj.Exprs {
|
|
t, exists := solved[x]
|
|
if !exists {
|
|
found = false
|
|
continue
|
|
}
|
|
if typ == nil { // set the first time
|
|
typ = t
|
|
}
|
|
if err := typ.Cmp(t); err != nil {
|
|
return false, err
|
|
}
|
|
}
|
|
return found, nil
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
func (obj *EqualityInvariantList) Possible(partials []Invariant) error {
|
|
// The idea here is that we look for the expression pointers in the list
|
|
// of partial invariants. It's only impossible if we (1) find two or
|
|
// more, and (2) that any of them relate to each other. The second part
|
|
// is harder.
|
|
inList := func(needle Expr, haystack []Expr) bool {
|
|
for _, x := range haystack {
|
|
if x == needle {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
exprs := []Invariant{}
|
|
for _, x := range partials {
|
|
for _, y := range x.ExprList() { // []Expr
|
|
if inList(y, obj.Exprs) {
|
|
exprs = append(exprs, x)
|
|
}
|
|
}
|
|
}
|
|
|
|
if len(exprs) <= 1 {
|
|
return nil // we're unconnected to anything, this is possible!
|
|
}
|
|
|
|
// we only need to check the connections in this case...
|
|
// let's keep this simple, and less perfect for now...
|
|
var typ *types.Type
|
|
for _, x := range exprs {
|
|
eq, ok := x.(*EqualsInvariant)
|
|
if !ok {
|
|
// XXX: add support for other kinds in the future...
|
|
continue
|
|
}
|
|
|
|
if typ != nil {
|
|
if err := typ.Cmp(eq.Type); err != nil {
|
|
// we found proof it's not possible
|
|
return errwrap.Wrapf(err, "not possible")
|
|
}
|
|
}
|
|
|
|
typ = eq.Type // store for next type
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// EqualityWrapListInvariant expresses that a list in Expr1 must have elements
|
|
// that have the same type as the expression in Expr2Val.
|
|
type EqualityWrapListInvariant struct {
|
|
Expr1 Expr
|
|
Expr2Val Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapListInvariant) String() string {
|
|
return fmt.Sprintf("%p == [%p]", obj.Expr1, obj.Expr2Val)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityWrapListInvariant) ExprList() []Expr {
|
|
return []Expr{obj.Expr1, obj.Expr2Val}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityWrapListInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1] // list type
|
|
t2, exists2 := solved[obj.Expr2Val]
|
|
if !exists1 || !exists2 {
|
|
return false, nil // not matched yet
|
|
}
|
|
if t1.Kind != types.KindList {
|
|
return false, fmt.Errorf("expected list kind")
|
|
}
|
|
if err := t1.Val.Cmp(t2); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
return true, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *EqualityWrapListInvariant) Possible(partials []Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// EqualityWrapMapInvariant expresses that a map in Expr1 must have keys that
|
|
// match the type of the expression in Expr2Key and values that match the type
|
|
// of the expression in Expr2Val.
|
|
type EqualityWrapMapInvariant struct {
|
|
Expr1 Expr
|
|
Expr2Key Expr
|
|
Expr2Val Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapMapInvariant) String() string {
|
|
return fmt.Sprintf("%p == {%p: %p}", obj.Expr1, obj.Expr2Key, obj.Expr2Val)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityWrapMapInvariant) ExprList() []Expr {
|
|
return []Expr{obj.Expr1, obj.Expr2Key, obj.Expr2Val}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityWrapMapInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1] // map type
|
|
t2, exists2 := solved[obj.Expr2Key]
|
|
t3, exists3 := solved[obj.Expr2Val]
|
|
if !exists1 || !exists2 || !exists3 {
|
|
return false, nil // not matched yet
|
|
}
|
|
if t1.Kind != types.KindMap {
|
|
return false, fmt.Errorf("expected map kind")
|
|
}
|
|
if err := t1.Key.Cmp(t2); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
if err := t1.Val.Cmp(t3); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
return true, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *EqualityWrapMapInvariant) Possible(partials []Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// EqualityWrapStructInvariant expresses that a struct in Expr1 must have fields
|
|
// that match the type of the expressions listed in Expr2Map.
|
|
type EqualityWrapStructInvariant struct {
|
|
Expr1 Expr
|
|
Expr2Map map[string]Expr
|
|
Expr2Ord []string
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapStructInvariant) String() string {
|
|
var s = make([]string, len(obj.Expr2Ord))
|
|
for i, k := range obj.Expr2Ord {
|
|
t, ok := obj.Expr2Map[k]
|
|
if !ok {
|
|
panic("malformed struct order")
|
|
}
|
|
if t == nil {
|
|
panic("malformed struct field")
|
|
}
|
|
s[i] = fmt.Sprintf("%s %p", k, t)
|
|
}
|
|
return fmt.Sprintf("%p == struct{%s}", obj.Expr1, strings.Join(s, "; "))
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityWrapStructInvariant) ExprList() []Expr {
|
|
exprs := []Expr{obj.Expr1}
|
|
for _, x := range obj.Expr2Map {
|
|
exprs = append(exprs, x)
|
|
}
|
|
return exprs
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityWrapStructInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1] // struct type
|
|
if !exists1 {
|
|
return false, nil // not matched yet
|
|
}
|
|
if t1.Kind != types.KindStruct {
|
|
return false, fmt.Errorf("expected struct kind")
|
|
}
|
|
|
|
found := true // assume true
|
|
for _, key := range obj.Expr2Ord {
|
|
_, exists := t1.Map[key]
|
|
if !exists {
|
|
return false, fmt.Errorf("missing invariant struct key of: `%s`", key)
|
|
}
|
|
e, exists := obj.Expr2Map[key]
|
|
if !exists {
|
|
return false, fmt.Errorf("missing matched struct key of: `%s`", key)
|
|
}
|
|
t, exists := solved[e]
|
|
if !exists {
|
|
found = false
|
|
continue
|
|
}
|
|
if err := t1.Map[key].Cmp(t); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
}
|
|
|
|
return found, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *EqualityWrapStructInvariant) Possible(partials []Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// EqualityWrapFuncInvariant expresses that a func in Expr1 must have args that
|
|
// match the type of the expressions listed in Expr2Map and a return value that
|
|
// matches the type of the expression in Expr2Out.
|
|
// TODO: should this be named EqualityWrapCallInvariant or not?
|
|
type EqualityWrapFuncInvariant struct {
|
|
Expr1 Expr
|
|
Expr2Map map[string]Expr
|
|
Expr2Ord []string
|
|
Expr2Out Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapFuncInvariant) String() string {
|
|
var s = make([]string, len(obj.Expr2Ord))
|
|
for i, k := range obj.Expr2Ord {
|
|
t, ok := obj.Expr2Map[k]
|
|
if !ok {
|
|
panic("malformed func order")
|
|
}
|
|
if t == nil {
|
|
panic("malformed func field")
|
|
}
|
|
s[i] = fmt.Sprintf("%s %p", k, t)
|
|
}
|
|
return fmt.Sprintf("%p == func(%s) %p", obj.Expr1, strings.Join(s, "; "), obj.Expr2Out)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityWrapFuncInvariant) ExprList() []Expr {
|
|
exprs := []Expr{obj.Expr1}
|
|
for _, x := range obj.Expr2Map {
|
|
exprs = append(exprs, x)
|
|
}
|
|
exprs = append(exprs, obj.Expr2Out)
|
|
return exprs
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityWrapFuncInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1] // func type
|
|
if !exists1 {
|
|
return false, nil // not matched yet
|
|
}
|
|
if t1.Kind != types.KindFunc {
|
|
return false, fmt.Errorf("expected func kind")
|
|
}
|
|
|
|
found := true // assume true
|
|
for _, key := range obj.Expr2Ord {
|
|
_, exists := t1.Map[key]
|
|
if !exists {
|
|
return false, fmt.Errorf("missing invariant struct key of: `%s`", key)
|
|
}
|
|
e, exists := obj.Expr2Map[key]
|
|
if !exists {
|
|
return false, fmt.Errorf("missing matched struct key of: `%s`", key)
|
|
}
|
|
t, exists := solved[e]
|
|
if !exists {
|
|
found = false
|
|
continue
|
|
}
|
|
if err := t1.Map[key].Cmp(t); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
}
|
|
|
|
t, exists := solved[obj.Expr2Out]
|
|
if !exists {
|
|
return false, nil
|
|
}
|
|
if err := t1.Out.Cmp(t); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
|
|
return found, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *EqualityWrapFuncInvariant) Possible(partials []Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// EqualityWrapCallInvariant expresses that a call result that happened in Expr1
|
|
// must match the type of the function result listed in Expr2. In this case,
|
|
// Expr2 will be a function expression, and the returned expression should match
|
|
// with the Expr1 expression, when comparing types.
|
|
// TODO: should this be named EqualityWrapFuncInvariant or not?
|
|
// TODO: should Expr1 and Expr2 be reversed???
|
|
type EqualityWrapCallInvariant struct {
|
|
Expr1 Expr
|
|
Expr2Func Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapCallInvariant) String() string {
|
|
return fmt.Sprintf("%p == call(%p)", obj.Expr1, obj.Expr2Func)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *EqualityWrapCallInvariant) ExprList() []Expr {
|
|
return []Expr{obj.Expr1, obj.Expr2Func}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *EqualityWrapCallInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
t1, exists1 := solved[obj.Expr1] // call type
|
|
t2, exists2 := solved[obj.Expr2Func]
|
|
if !exists1 || !exists2 {
|
|
return false, nil // not matched yet
|
|
}
|
|
//if t1.Kind != types.KindFunc {
|
|
// return false, fmt.Errorf("expected func kind")
|
|
//}
|
|
|
|
if t2.Kind != types.KindFunc {
|
|
return false, fmt.Errorf("expected func kind")
|
|
}
|
|
if err := t1.Cmp(t2.Out); err != nil {
|
|
return false, err // inconsistent!
|
|
}
|
|
return true, nil // matched!
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *EqualityWrapCallInvariant) Possible(partials []Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// GeneratorInvariant is an experimental type of new invariant. The idea is that
|
|
// this is a special invariant that the solver knows how to use; the solver runs
|
|
// all the easy bits first, and then passes the current solution state into the
|
|
// function, and in response, it runs some user-defined code and builds some new
|
|
// invariants that are added to the solver! This is not without caveats... This
|
|
// should only be used sparingly, and with care. It can suffer from the
|
|
// confluence problem, if the generator code that was provided is incorrect.
|
|
// What this means is that it could generate different results (and a different
|
|
// final solution) depending on the order in which it is called. Since this is
|
|
// undesirable, you must only use it for straight-forward situations. As an
|
|
// extreme example, if it generated different invariants depending on the time
|
|
// of day, this would be very problematic, and evil. Alternatively, it could be
|
|
// a pure function, but that returns wildly different results depending on what
|
|
// invariants were passed in. Use it wisely. It was added to make the printf
|
|
// function (which can have an infinite number of signatures) possible to
|
|
// express in terms of "normal" invariants. Lastly, if you wanted to use this to
|
|
// add-in partial progress, you could have it generate a list of invariants and
|
|
// include a new generator invariant in this list. Be sure to only do this if
|
|
// you are making progress on each invocation, and make sure to avoid infinite
|
|
// looping which isn't something we can currently detect or prevent. One special
|
|
// bit about generators and returning a partial: you must always return the
|
|
// minimum set of expressions that need to be solved in the first Unify() call
|
|
// that also returns the very first generator. This is because you must not rely
|
|
// on the generator to tell the solver about new expressions that it *also*
|
|
// wants solved. This is because after the initial (pre-generator-running)
|
|
// collection of the invariants, we need to be able to build a list of all the
|
|
// expressions that need to be solved for us to consider the problem "done". If
|
|
// a new expression only appeared after we ran a generator, then this would
|
|
// require our solver be far more complicated than it needs to be and currently
|
|
// is. Besides, there's no reason (that I know of at the moment) that needs this
|
|
// sort of invariant that only appears after the solver is running.
|
|
//
|
|
// NOTE: We might *consider* an optimization where we return a different kind of
|
|
// error that represents a response of "impossible". This would mean that there
|
|
// is no way to reconcile the current world-view with what is know about things.
|
|
// However, it would be easier and better to just return your invariants and let
|
|
// the normal solver run its course, although future research might show that it
|
|
// could maybe help in some cases.
|
|
// XXX: solver question: Can our solver detect `expr1 == str` AND `expr1 == int`
|
|
// and fail the whole thing when we know of a case like this that is impossible?
|
|
type GeneratorInvariant struct {
|
|
// Func is a generator function that takes the state of the world, and
|
|
// returns new invariants that should be added to this world view. The
|
|
// state of the world includes both the currently unsolved invariants,
|
|
// as well as the known solution map that has been solved so far. If
|
|
// this returns nil, we add the invariants it returned and we remove it
|
|
// from the list. If we error, it's because we don't have any new
|
|
// information to provide at this time...
|
|
Func func(invariants []Invariant, solved map[Expr]*types.Type) ([]Invariant, error)
|
|
|
|
// Inactive specifies that we tried to run this, but it didn't help us
|
|
// progress forwards. It can be reset if needed. It should only be set
|
|
// or read by the solver itself.
|
|
Inactive bool
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *GeneratorInvariant) String() string {
|
|
return fmt.Sprintf("gen(%p)", obj.Func) // TODO: improve this
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *GeneratorInvariant) ExprList() []Expr {
|
|
return []Expr{}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *GeneratorInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
// XXX: not implemented (don't panic though)
|
|
//return false, err // inconsistent!
|
|
//return false, nil // not matched yet
|
|
//return true, nil // matched!
|
|
return false, nil // not matched yet
|
|
|
|
// If we error, it's because we don't have any new information to
|
|
// provide at this time... If it's nil, it's because the invariants
|
|
// could have worked with this solution.
|
|
//invariants, err := obj.Func(?, solved)
|
|
//if err != nil {
|
|
//}
|
|
}
|
|
|
|
// Possible is currently not implemented!
|
|
func (obj *GeneratorInvariant) Possible(partials []Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// ConjunctionInvariant represents a list of invariants which must all be true
|
|
// together. In other words, it's a grouping construct for a set of invariants.
|
|
type ConjunctionInvariant struct {
|
|
Invariants []Invariant
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *ConjunctionInvariant) String() string {
|
|
var a []string
|
|
for _, x := range obj.Invariants {
|
|
s := x.String()
|
|
a = append(a, s)
|
|
}
|
|
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *ConjunctionInvariant) ExprList() []Expr {
|
|
exprs := []Expr{}
|
|
for _, x := range obj.Invariants {
|
|
exprs = append(exprs, x.ExprList()...)
|
|
}
|
|
return exprs
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *ConjunctionInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
found := true // assume true
|
|
for _, invar := range obj.Invariants {
|
|
match, err := invar.Matches(solved)
|
|
if err != nil {
|
|
return false, nil
|
|
}
|
|
if !match {
|
|
found = false
|
|
}
|
|
}
|
|
return found, nil
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *ConjunctionInvariant) Possible(partials []Invariant) error {
|
|
for _, invar := range obj.Invariants {
|
|
if err := invar.Possible(partials); err != nil {
|
|
// we found proof it's not possible
|
|
return errwrap.Wrapf(err, "not possible")
|
|
}
|
|
}
|
|
// XXX: unfortunately we didn't look for them all together with a solver
|
|
return nil
|
|
}
|
|
|
|
// ExclusiveInvariant represents a list of invariants where one and *only* one
|
|
// should hold true. To combine multiple invariants in one of the list elements,
|
|
// you can group multiple invariants together using a ConjunctionInvariant. Do
|
|
// note that the solver might not verify that only one of the invariants in the
|
|
// list holds true, as it might choose to be lazy and pick the first solution
|
|
// found.
|
|
type ExclusiveInvariant struct {
|
|
Invariants []Invariant
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *ExclusiveInvariant) String() string {
|
|
var a []string
|
|
for _, x := range obj.Invariants {
|
|
s := x.String()
|
|
a = append(a, s)
|
|
}
|
|
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *ExclusiveInvariant) ExprList() []Expr {
|
|
// XXX: We should do this if we assume that exclusives don't have some
|
|
// sort of transient expr to satisfy that doesn't disappear depending on
|
|
// which choice in the exclusive is chosen...
|
|
//exprs := []Expr{}
|
|
//for _, x := range obj.Invariants {
|
|
// exprs = append(exprs, x.ExprList()...)
|
|
//}
|
|
//return exprs
|
|
// XXX: But if we ever specify an expr in this exclusive that isn't
|
|
// referenced anywhere else, then we'd need to use the above so that our
|
|
// type unification algorithm knows not to stop too early.
|
|
return []Expr{} // XXX: Do we want to the set instead?
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors. Because this partial invariant requires only
|
|
// one to be true, it will mask children errors, since it's normal for only one
|
|
// to be consistent.
|
|
func (obj *ExclusiveInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
found := false
|
|
reterr := fmt.Errorf("all exclusives errored")
|
|
var errs error
|
|
for _, invar := range obj.Invariants {
|
|
match, err := invar.Matches(solved)
|
|
if err != nil {
|
|
errs = errwrap.Append(errs, err)
|
|
continue
|
|
}
|
|
if !match {
|
|
// at least one was false, so we're not done here yet...
|
|
// we don't want to error yet, since we can't know there
|
|
// won't be a conflict once we get more data about this!
|
|
reterr = nil // clear the error
|
|
continue
|
|
}
|
|
if found { // we already found one
|
|
return false, fmt.Errorf("more than one exclusive solution")
|
|
}
|
|
found = true
|
|
}
|
|
|
|
if found { // we got exactly one valid solution
|
|
return true, nil
|
|
}
|
|
|
|
return false, errwrap.Wrapf(reterr, errwrap.String(errs))
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *ExclusiveInvariant) Possible(partials []Invariant) error {
|
|
var errs error
|
|
for _, invar := range obj.Invariants {
|
|
err := invar.Possible(partials)
|
|
if err == nil {
|
|
// we found proof it's possible
|
|
return nil
|
|
}
|
|
errs = errwrap.Append(errs, err)
|
|
}
|
|
|
|
return errwrap.Wrapf(errs, "not possible")
|
|
}
|
|
|
|
// Simplify attempts to reduce the exclusive invariant to eliminate any
|
|
// possibilities based on the list of known partials at this time. Hopefully,
|
|
// this will weed out some of the function polymorphism possibilities so that we
|
|
// can solve the problem without recursive, combinatorial permutation, which is
|
|
// very, very slow.
|
|
func (obj *ExclusiveInvariant) Simplify(partials []Invariant) ([]Invariant, error) {
|
|
if len(obj.Invariants) == 0 { // unexpected case
|
|
return []Invariant{}, nil // we don't need anything!
|
|
}
|
|
|
|
possible := []Invariant{}
|
|
var reasons error
|
|
for _, invar := range obj.Invariants { // []Invariant
|
|
if err := invar.Possible(partials); err != nil {
|
|
reasons = errwrap.Append(reasons, err)
|
|
continue
|
|
}
|
|
possible = append(possible, invar)
|
|
}
|
|
|
|
if len(possible) == 0 { // nothing was possible
|
|
return nil, errwrap.Wrapf(reasons, "no possible simplifications")
|
|
}
|
|
if len(possible) == 1 { // we flattened out the exclusive!
|
|
return possible, nil
|
|
}
|
|
|
|
if len(possible) == len(obj.Invariants) { // nothing changed
|
|
return nil, fmt.Errorf("no possible simplifications, we're unchanged")
|
|
}
|
|
|
|
invar := &ExclusiveInvariant{
|
|
Invariants: possible, // hopefully a smaller exclusive!
|
|
}
|
|
return []Invariant{invar}, nil
|
|
}
|
|
|
|
// AnyInvariant is an invariant that symbolizes that the expression can be any
|
|
// type. It is sometimes used to ensure that an expr actually gets a solution
|
|
// type so that it is not left unreferenced, and as a result, unsolved.
|
|
// TODO: is there a better name than AnyInvariant
|
|
type AnyInvariant struct {
|
|
Expr Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *AnyInvariant) String() string {
|
|
return fmt.Sprintf("%p == *", obj.Expr)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *AnyInvariant) ExprList() []Expr {
|
|
return []Expr{obj.Expr}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *AnyInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
_, exists := solved[obj.Expr] // we only care that it is found.
|
|
return exists, nil
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation always returns nil.
|
|
func (obj *AnyInvariant) Possible([]Invariant) error {
|
|
// keep it simple, even though we don't technically check the inputs...
|
|
return nil
|
|
}
|
|
|
|
// ValueInvariant is an invariant that stores the value associated with an expr
|
|
// if it happens to be known statically at unification/compile time. This must
|
|
// only be used for static/pure values. For example, in `$x = 42`, we know that
|
|
// $x is 42. It's useful here because for `printf("hello %d times", 42)` we can
|
|
// get both the format string, and the other args as these new invariants, and
|
|
// we'd store those separately into this invariant, where they can eventually be
|
|
// passed into the generator invariant, where it can parse the format string and
|
|
// we'd be able to produce a precise type for the printf function, since it's
|
|
// nearly impossible to do otherwise since the number of possibilities is
|
|
// infinite! One special note: these values are typically not consumed, by the
|
|
// solver, because they need to be around for the generator invariant to use, so
|
|
// make sure your solver implementation can still terminate with unused
|
|
// invariants!
|
|
type ValueInvariant struct {
|
|
Expr Expr
|
|
Value types.Value // pointer
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *ValueInvariant) String() string {
|
|
return fmt.Sprintf("%p == %s", obj.Expr, obj.Value)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *ValueInvariant) ExprList() []Expr {
|
|
return []Expr{obj.Expr}
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *ValueInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
typ, exists := solved[obj.Expr]
|
|
if !exists {
|
|
return false, nil
|
|
}
|
|
if err := typ.Cmp(obj.Value.Type()); err != nil {
|
|
return false, err
|
|
}
|
|
return true, nil
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
func (obj *ValueInvariant) Possible(partials []Invariant) error {
|
|
// XXX: Double check this is logical. It was modified from EqualsInvariant.
|
|
solved := map[Expr]*types.Type{
|
|
obj.Expr: obj.Value.Type(),
|
|
}
|
|
for _, invar := range partials { // check each one
|
|
_, err := invar.Matches(solved)
|
|
if err != nil { // inconsistent, so it's not possible
|
|
return errwrap.Wrapf(err, "not possible")
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// CallFuncArgsValueInvariant expresses that a func call is associated with a
|
|
// particular func, and that it is called with a specific list of args. Expr
|
|
// must match the function call expression, Func must match the actual function
|
|
// expression, and Args matches the args used in the call to run the func.
|
|
// TODO: should this be named FuncCallArgsValueInvariant or something different
|
|
// or not?
|
|
type CallFuncArgsValueInvariant struct {
|
|
// Expr represents the pointer to the ExprCall.
|
|
Expr Expr
|
|
|
|
// Func represents the pointer to the ExprFunc that ExprCall is using.
|
|
Func Expr
|
|
|
|
// Args represents the list of args that the ExprCall is using to call
|
|
// the ExprFunc. A solver might speculatively call Value() on each of
|
|
// these in the hopes of doing something useful if a value happens to be
|
|
// known statically at compile time. One such solver that might do this
|
|
// is the GeneratorInvariant inside of a difficult function like printf.
|
|
Args []Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *CallFuncArgsValueInvariant) String() string {
|
|
return fmt.Sprintf("%p == callfuncargs(%p) %p", obj.Expr, obj.Func, obj.Args) // TODO: improve this
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant.
|
|
func (obj *CallFuncArgsValueInvariant) ExprList() []Expr {
|
|
return []Expr{obj.Expr} // XXX: add obj.Func or each obj.Args ?
|
|
}
|
|
|
|
// Matches returns whether an invariant matches the existing solution. If it is
|
|
// inconsistent, then it errors.
|
|
func (obj *CallFuncArgsValueInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
// XXX: not implemented (don't panic though)
|
|
//return false, err // inconsistent!
|
|
//return false, nil // not matched yet
|
|
//return true, nil // matched!
|
|
return false, nil // not matched yet
|
|
}
|
|
|
|
// Possible returns an error if it is certain that it is NOT possible to get a
|
|
// solution with this invariant and the set of partials. In certain cases, it
|
|
// might not be able to determine that it's not possible, while simultaneously
|
|
// not being able to guarantee a possible solution either. In this situation, it
|
|
// should return nil, since this is used as a filtering mechanism, and the nil
|
|
// result of possible is preferred over eliminating a tricky, but possible one.
|
|
// This particular implementation is currently not implemented!
|
|
func (obj *CallFuncArgsValueInvariant) Possible(partials []Invariant) error {
|
|
// XXX: not implemented
|
|
return nil // safer to return nil than error
|
|
}
|
|
|
|
// SkipInvariant expresses that a particular expression does must not be part of
|
|
// the final solution, and should be skipped. It can be part of the solving
|
|
// process though.
|
|
type SkipInvariant struct {
|
|
Expr Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *SkipInvariant) String() string {
|
|
return fmt.Sprintf("skip(%p)", obj.Expr)
|
|
}
|
|
|
|
// ExprList returns the list of valid expressions in this invariant. It is not
|
|
// used for this invariant.
|
|
func (obj *SkipInvariant) ExprList() []Expr {
|
|
// XXX: not used
|
|
return []Expr{obj.Expr}
|
|
}
|
|
|
|
// Matches is not used for this invariant.
|
|
func (obj *SkipInvariant) Matches(solved map[Expr]*types.Type) (bool, error) {
|
|
// XXX: not used
|
|
panic("not used")
|
|
}
|
|
|
|
// Possible is not used for this invariant.
|
|
func (obj *SkipInvariant) Possible(partials []Invariant) error {
|
|
// XXX: not used
|
|
panic("not used")
|
|
}
|