Files
mgmt/lang/funcs/struct_lookup_optional_func.go
James Shubin 3e31ee9455 legal: Additional permission under GNU GPL version 3 section 7
With the recent merging of embedded package imports and the entry CLI
package, it is now possible for users to build in mcl code into a single
binary. This additional permission makes it explicitly clear that this
is permitted to make it easier for those users. The condition is phrased
so that the terms can be "patched" by the original author if it's
necessary for the project. For example, if the name of the language
(mcl) changes, has a differently named new version, someone finds a
phrasing improvement or a legal loophole, or for some other
reasonable circumstance. Now go write some beautiful embedded tools!
2024-03-05 01:04:09 -05:00

560 lines
18 KiB
Go

// Mgmt
// Copyright (C) 2013-2024+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package funcs
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// StructLookupOptionalFuncName is the name this function is registered
// as. This starts with an underscore so that it cannot be used from the
// lexer.
StructLookupOptionalFuncName = "_struct_lookup_optional"
// arg names...
structLookupOptionalArgNameStruct = "struct"
structLookupOptionalArgNameField = "field"
structLookupOptionalArgNameOptional = "optional"
)
func init() {
Register(StructLookupOptionalFuncName, func() interfaces.Func { return &StructLookupOptionalFunc{} }) // must register the func and name
}
var _ interfaces.PolyFunc = &StructLookupOptionalFunc{} // ensure it meets this expectation
// StructLookupOptionalFunc is a struct field lookup function. It does a special
// trick in that it will unify on a struct that doesn't have the specified field
// in it, but in that case, it will always return the optional value. This is a
// bit different from the "default" mechanism that is used by list and map
// lookup functions.
type StructLookupOptionalFunc struct {
Type *types.Type // Kind == Struct, that is used as the struct we lookup
Out *types.Type // type of field we're extracting (also the type of optional)
init *interfaces.Init
last types.Value // last value received to use for diff
field string
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *StructLookupOptionalFunc) String() string {
return StructLookupOptionalFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *StructLookupOptionalFunc) ArgGen(index int) (string, error) {
seq := []string{structLookupOptionalArgNameStruct, structLookupOptionalArgNameField, structLookupOptionalArgNameOptional}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *StructLookupOptionalFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(struct T1, field str, optional T2) T2
structName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
fieldName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
optionalName, err := obj.ArgGen(2)
if err != nil {
return nil, err
}
dummyStruct := &interfaces.ExprAny{} // corresponds to the struct type
dummyField := &interfaces.ExprAny{} // corresponds to the field type
dummyOptional := &interfaces.ExprAny{} // corresponds to the optional type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
// field arg type of string
invar = &interfaces.EqualsInvariant{
Expr: dummyField,
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// XXX: we could use this relationship *if* our solver could understand
// different fields, and partial struct matches. I guess we'll leave it
// for another day!
//mapped := make(map[string]interfaces.Expr)
//ordered := []string{???}
//mapped[???] = dummyField
//invar = &interfaces.EqualityWrapStructInvariant{
// Expr1: dummyStruct,
// Expr2Map: mapped,
// Expr2Ord: ordered,
//}
//invariants = append(invariants, invar)
// These two types should be identical. This is the safest approach. In
// the case where the struct field is missing, then this should be true,
// and when it is present, we'll never use the optional value, but we
// can still enforce it's the same type.
invar = &interfaces.EqualityInvariant{
Expr1: dummyOptional,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{structName, fieldName, optionalName}
mapped[structName] = dummyStruct
mapped[fieldName] = dummyField
mapped[optionalName] = dummyOptional
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 3 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyStruct,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyField,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[2],
Expr2: dummyOptional,
}
invariants = append(invariants, invar)
// second arg must be a string
invar = &interfaces.EqualsInvariant{
Expr: cfavInvar.Args[1],
Type: types.TypeStr,
}
invariants = append(invariants, invar)
// Not necessary for the field to be known or be static!
var field string
value, err := cfavInvar.Args[1].Value() // is it known?
if err == nil {
if k := value.Type().Kind; k != types.KindStr {
return nil, fmt.Errorf("unable to build function with 1st arg of kind: %s", k)
}
field = value.Str() // must not panic
}
// If we figure out both of these types, we'll know the
var t1 *types.Type // struct type
var t2 *types.Type // optional / return type
// validateArg0 checks: struct T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
// we happen to have a struct!
if k := typ.Kind; k != types.KindStruct {
return fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
// check both Ord and Map for safety
found := false
for _, s := range typ.Ord {
if s == field {
found = true
break
}
}
t, exists := typ.Map[field] // type found is T2
if field != "" {
if !exists || !found {
//fmt.Printf("might be using optional arg, struct is missing field: %s\n", field)
} else if err := t.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
// learn!
t2 = t
}
if err := typ.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
// learn!
t1 = typ
return nil
}
validateArg2OrOut := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if err := typ.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
// learn!
t2 = typ
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 (and sometimes t2) on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 (and sometimes t2) on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[2].Type(); err == nil { // is it known?
// this sets t2 on success if it learned
if err := validateArg2OrOut(typ); err != nil {
return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[2]]; exists { // alternate way to lookup type
// this sets t2 on success if it learned
if err := validateArg2OrOut(typ); err != nil {
return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent")
}
}
// look at the return type too (if known)
if typ, err := cfavInvar.Expr.Type(); err == nil { // is it known?
// this sets t2 on success if it learned
if err := validateArg2OrOut(typ); err != nil {
return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Expr]; exists { // alternate way to lookup type
// this sets t2 on success if it learned
if err := validateArg2OrOut(typ); err != nil {
return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent")
}
}
// XXX: if the struct type/value isn't know statically?
if t1 != nil {
invar = &interfaces.EqualsInvariant{
Expr: dummyStruct,
Type: t1,
}
invariants = append(invariants, invar)
// We know *some* information about the struct!
// Let's hope the unusedField expr won't trip
// up the solver...
mapped := make(map[string]interfaces.Expr)
ordered := []string{}
for _, x := range t1.Ord {
// We *don't* need to solve unusedField
unusedField := &interfaces.ExprAny{}
mapped[x] = unusedField
if x == field { // the one we care about
mapped[x] = dummyOut
}
ordered = append(ordered, x)
}
// We map to dummyOut which is the return type
// and has the same type of the field we want!
mapped[field] = dummyOut // redundant =D
invar = &interfaces.EqualityWrapStructInvariant{
Expr1: dummyStruct,
Expr2Map: mapped,
Expr2Ord: ordered,
}
// We only want to add this weird thing if the
// field actually exists. Otherwise ignore it.
if _, exists := t1.Map[field]; field != "" && exists {
invariants = append(invariants, invar)
}
}
if t2 != nil {
invar = &interfaces.EqualsInvariant{
Expr: dummyOptional,
Type: t2,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualsInvariant{
Expr: dummyOut,
Type: t2,
}
invariants = append(invariants, invar)
}
// XXX: if t1 or t2 are missing, we could also return a
// new generator for later if we learn new information,
// but we'd have to be careful to not do it infinitely.
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *StructLookupOptionalFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 3 {
return nil, fmt.Errorf("the structlookup function needs exactly three args")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
tStruct, exists := typ.Map[typ.Ord[0]]
if !exists || tStruct == nil {
return nil, fmt.Errorf("first arg must be specified")
}
tField, exists := typ.Map[typ.Ord[1]]
if !exists || tField == nil {
return nil, fmt.Errorf("second arg must be specified")
}
if err := tField.Cmp(types.TypeStr); err != nil {
return nil, errwrap.Wrapf(err, "field must be an str")
}
tOptional, exists := typ.Map[typ.Ord[2]]
if !exists || tOptional == nil {
return nil, fmt.Errorf("third arg must be specified")
}
if err := tOptional.Cmp(typ.Out); err != nil {
return nil, errwrap.Wrapf(err, "optional arg must match return type")
}
// NOTE: We actually don't know which field this is, only its type! we
// could have cached the discovered field during Polymorphisms(), but it
// turns out it's not actually necessary for us to know it to build the
// struct.
obj.Type = tStruct // struct type
obj.Out = typ.Out // type of return value
return obj.sig(), nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *StructLookupOptionalFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindStruct {
return fmt.Errorf("type must be a kind of struct")
}
if obj.Out == nil {
return fmt.Errorf("return type must be specified")
}
// TODO: can we do better and validate more aspects here?
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *StructLookupOptionalFunc) Info() *interfaces.Info {
var sig *types.Type
if obj.Type != nil { // don't panic if called speculatively
// TODO: can obj.Out be nil (a partial) ?
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: sig, // func kind
Err: obj.Validate(),
}
}
// helper
func (obj *StructLookupOptionalFunc) sig() *types.Type {
return types.NewType(fmt.Sprintf("func(%s %s, %s str, %s %s) %s", structLookupOptionalArgNameStruct, obj.Type.String(), structLookupOptionalArgNameField, structLookupOptionalArgNameOptional, obj.Out.String(), obj.Out.String()))
}
// Init runs some startup code for this function.
func (obj *StructLookupOptionalFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *StructLookupOptionalFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
st := (input.Struct()[structLookupOptionalArgNameStruct]).(*types.StructValue)
field := input.Struct()[structLookupOptionalArgNameField].Str()
optional := input.Struct()[structLookupOptionalArgNameOptional]
if field == "" {
return fmt.Errorf("received empty field")
}
if obj.field == "" {
obj.field = field // store first field
}
if field != obj.field {
return fmt.Errorf("input field changed from: `%s`, to: `%s`", obj.field, field)
}
// We know the result of this lookup statically at
// compile time, but for simplicity we check each time
// here anyways. Maybe one day there will be a fancy
// reason why this might vary over time.
var result types.Value
val, exists := st.Lookup(field)
if exists {
result = val
} else {
result = optional
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-ctx.Done():
return nil
}
}
}