With the recent merging of embedded package imports and the entry CLI package, it is now possible for users to build in mcl code into a single binary. This additional permission makes it explicitly clear that this is permitted to make it easier for those users. The condition is phrased so that the terms can be "patched" by the original author if it's necessary for the project. For example, if the name of the language (mcl) changes, has a differently named new version, someone finds a phrasing improvement or a legal loophole, or for some other reasonable circumstance. Now go write some beautiful embedded tools!
560 lines
18 KiB
Go
560 lines
18 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2024+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
// Additional permission under GNU GPL version 3 section 7
|
|
//
|
|
// If you modify this program, or any covered work, by linking or combining it
|
|
// with embedded mcl code and modules (and that the embedded mcl code and
|
|
// modules which link with this program, contain a copy of their source code in
|
|
// the authoritative form) containing parts covered by the terms of any other
|
|
// license, the licensors of this program grant you additional permission to
|
|
// convey the resulting work. Furthermore, the licensors of this program grant
|
|
// the original author, James Shubin, additional permission to update this
|
|
// additional permission if he deems it necessary to achieve the goals of this
|
|
// additional permission.
|
|
|
|
package funcs
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
|
|
"github.com/purpleidea/mgmt/lang/interfaces"
|
|
"github.com/purpleidea/mgmt/lang/types"
|
|
"github.com/purpleidea/mgmt/util/errwrap"
|
|
)
|
|
|
|
const (
|
|
// StructLookupOptionalFuncName is the name this function is registered
|
|
// as. This starts with an underscore so that it cannot be used from the
|
|
// lexer.
|
|
StructLookupOptionalFuncName = "_struct_lookup_optional"
|
|
|
|
// arg names...
|
|
structLookupOptionalArgNameStruct = "struct"
|
|
structLookupOptionalArgNameField = "field"
|
|
structLookupOptionalArgNameOptional = "optional"
|
|
)
|
|
|
|
func init() {
|
|
Register(StructLookupOptionalFuncName, func() interfaces.Func { return &StructLookupOptionalFunc{} }) // must register the func and name
|
|
}
|
|
|
|
var _ interfaces.PolyFunc = &StructLookupOptionalFunc{} // ensure it meets this expectation
|
|
|
|
// StructLookupOptionalFunc is a struct field lookup function. It does a special
|
|
// trick in that it will unify on a struct that doesn't have the specified field
|
|
// in it, but in that case, it will always return the optional value. This is a
|
|
// bit different from the "default" mechanism that is used by list and map
|
|
// lookup functions.
|
|
type StructLookupOptionalFunc struct {
|
|
Type *types.Type // Kind == Struct, that is used as the struct we lookup
|
|
Out *types.Type // type of field we're extracting (also the type of optional)
|
|
|
|
init *interfaces.Init
|
|
last types.Value // last value received to use for diff
|
|
field string
|
|
|
|
result types.Value // last calculated output
|
|
}
|
|
|
|
// String returns a simple name for this function. This is needed so this struct
|
|
// can satisfy the pgraph.Vertex interface.
|
|
func (obj *StructLookupOptionalFunc) String() string {
|
|
return StructLookupOptionalFuncName
|
|
}
|
|
|
|
// ArgGen returns the Nth arg name for this function.
|
|
func (obj *StructLookupOptionalFunc) ArgGen(index int) (string, error) {
|
|
seq := []string{structLookupOptionalArgNameStruct, structLookupOptionalArgNameField, structLookupOptionalArgNameOptional}
|
|
if l := len(seq); index >= l {
|
|
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
|
|
}
|
|
return seq[index], nil
|
|
}
|
|
|
|
// Unify returns the list of invariants that this func produces.
|
|
func (obj *StructLookupOptionalFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
|
|
var invariants []interfaces.Invariant
|
|
var invar interfaces.Invariant
|
|
|
|
// func(struct T1, field str, optional T2) T2
|
|
|
|
structName, err := obj.ArgGen(0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
fieldName, err := obj.ArgGen(1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
optionalName, err := obj.ArgGen(2)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
dummyStruct := &interfaces.ExprAny{} // corresponds to the struct type
|
|
dummyField := &interfaces.ExprAny{} // corresponds to the field type
|
|
dummyOptional := &interfaces.ExprAny{} // corresponds to the optional type
|
|
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
|
|
|
|
// field arg type of string
|
|
invar = &interfaces.EqualsInvariant{
|
|
Expr: dummyField,
|
|
Type: types.TypeStr,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
// XXX: we could use this relationship *if* our solver could understand
|
|
// different fields, and partial struct matches. I guess we'll leave it
|
|
// for another day!
|
|
//mapped := make(map[string]interfaces.Expr)
|
|
//ordered := []string{???}
|
|
//mapped[???] = dummyField
|
|
//invar = &interfaces.EqualityWrapStructInvariant{
|
|
// Expr1: dummyStruct,
|
|
// Expr2Map: mapped,
|
|
// Expr2Ord: ordered,
|
|
//}
|
|
//invariants = append(invariants, invar)
|
|
|
|
// These two types should be identical. This is the safest approach. In
|
|
// the case where the struct field is missing, then this should be true,
|
|
// and when it is present, we'll never use the optional value, but we
|
|
// can still enforce it's the same type.
|
|
invar = &interfaces.EqualityInvariant{
|
|
Expr1: dummyOptional,
|
|
Expr2: dummyOut,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
// full function
|
|
mapped := make(map[string]interfaces.Expr)
|
|
ordered := []string{structName, fieldName, optionalName}
|
|
mapped[structName] = dummyStruct
|
|
mapped[fieldName] = dummyField
|
|
mapped[optionalName] = dummyOptional
|
|
|
|
invar = &interfaces.EqualityWrapFuncInvariant{
|
|
Expr1: expr, // maps directly to us!
|
|
Expr2Map: mapped,
|
|
Expr2Ord: ordered,
|
|
Expr2Out: dummyOut,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
// generator function
|
|
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
|
|
for _, invariant := range fnInvariants {
|
|
// search for this special type of invariant
|
|
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
|
|
if !ok {
|
|
continue
|
|
}
|
|
// did we find the mapping from us to ExprCall ?
|
|
if cfavInvar.Func != expr {
|
|
continue
|
|
}
|
|
// cfavInvar.Expr is the ExprCall! (the return pointer)
|
|
// cfavInvar.Args are the args that ExprCall uses!
|
|
if l := len(cfavInvar.Args); l != 3 {
|
|
return nil, fmt.Errorf("unable to build function with %d args", l)
|
|
}
|
|
|
|
var invariants []interfaces.Invariant
|
|
var invar interfaces.Invariant
|
|
|
|
// add the relationship to the returned value
|
|
invar = &interfaces.EqualityInvariant{
|
|
Expr1: cfavInvar.Expr,
|
|
Expr2: dummyOut,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
// add the relationships to the called args
|
|
invar = &interfaces.EqualityInvariant{
|
|
Expr1: cfavInvar.Args[0],
|
|
Expr2: dummyStruct,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
invar = &interfaces.EqualityInvariant{
|
|
Expr1: cfavInvar.Args[1],
|
|
Expr2: dummyField,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
invar = &interfaces.EqualityInvariant{
|
|
Expr1: cfavInvar.Args[2],
|
|
Expr2: dummyOptional,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
// second arg must be a string
|
|
invar = &interfaces.EqualsInvariant{
|
|
Expr: cfavInvar.Args[1],
|
|
Type: types.TypeStr,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
// Not necessary for the field to be known or be static!
|
|
var field string
|
|
value, err := cfavInvar.Args[1].Value() // is it known?
|
|
if err == nil {
|
|
if k := value.Type().Kind; k != types.KindStr {
|
|
return nil, fmt.Errorf("unable to build function with 1st arg of kind: %s", k)
|
|
}
|
|
field = value.Str() // must not panic
|
|
}
|
|
|
|
// If we figure out both of these types, we'll know the
|
|
var t1 *types.Type // struct type
|
|
var t2 *types.Type // optional / return type
|
|
|
|
// validateArg0 checks: struct T1
|
|
validateArg0 := func(typ *types.Type) error {
|
|
if typ == nil { // unknown so far
|
|
return nil
|
|
}
|
|
|
|
// we happen to have a struct!
|
|
if k := typ.Kind; k != types.KindStruct {
|
|
return fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
|
|
}
|
|
|
|
// check both Ord and Map for safety
|
|
found := false
|
|
for _, s := range typ.Ord {
|
|
if s == field {
|
|
found = true
|
|
break
|
|
}
|
|
}
|
|
t, exists := typ.Map[field] // type found is T2
|
|
if field != "" {
|
|
if !exists || !found {
|
|
//fmt.Printf("might be using optional arg, struct is missing field: %s\n", field)
|
|
} else if err := t.Cmp(t2); t2 != nil && err != nil {
|
|
return errwrap.Wrapf(err, "input type was inconsistent")
|
|
}
|
|
|
|
// learn!
|
|
t2 = t
|
|
}
|
|
|
|
if err := typ.Cmp(t1); t1 != nil && err != nil {
|
|
return errwrap.Wrapf(err, "input type was inconsistent")
|
|
}
|
|
|
|
// learn!
|
|
t1 = typ
|
|
return nil
|
|
}
|
|
|
|
validateArg2OrOut := func(typ *types.Type) error {
|
|
if typ == nil { // unknown so far
|
|
return nil
|
|
}
|
|
|
|
if err := typ.Cmp(t2); t2 != nil && err != nil {
|
|
return errwrap.Wrapf(err, "input type was inconsistent")
|
|
}
|
|
|
|
// learn!
|
|
t2 = typ
|
|
return nil
|
|
}
|
|
|
|
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
|
|
// this sets t1 (and sometimes t2) on success if it learned
|
|
if err := validateArg0(typ); err != nil {
|
|
return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent")
|
|
}
|
|
}
|
|
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
|
|
// this sets t1 (and sometimes t2) on success if it learned
|
|
if err := validateArg0(typ); err != nil {
|
|
return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent")
|
|
}
|
|
}
|
|
|
|
if typ, err := cfavInvar.Args[2].Type(); err == nil { // is it known?
|
|
// this sets t2 on success if it learned
|
|
if err := validateArg2OrOut(typ); err != nil {
|
|
return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent")
|
|
}
|
|
}
|
|
if typ, exists := solved[cfavInvar.Args[2]]; exists { // alternate way to lookup type
|
|
// this sets t2 on success if it learned
|
|
if err := validateArg2OrOut(typ); err != nil {
|
|
return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent")
|
|
}
|
|
}
|
|
|
|
// look at the return type too (if known)
|
|
if typ, err := cfavInvar.Expr.Type(); err == nil { // is it known?
|
|
// this sets t2 on success if it learned
|
|
if err := validateArg2OrOut(typ); err != nil {
|
|
return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent")
|
|
}
|
|
}
|
|
if typ, exists := solved[cfavInvar.Expr]; exists { // alternate way to lookup type
|
|
// this sets t2 on success if it learned
|
|
if err := validateArg2OrOut(typ); err != nil {
|
|
return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent")
|
|
}
|
|
}
|
|
|
|
// XXX: if the struct type/value isn't know statically?
|
|
|
|
if t1 != nil {
|
|
invar = &interfaces.EqualsInvariant{
|
|
Expr: dummyStruct,
|
|
Type: t1,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
// We know *some* information about the struct!
|
|
// Let's hope the unusedField expr won't trip
|
|
// up the solver...
|
|
mapped := make(map[string]interfaces.Expr)
|
|
ordered := []string{}
|
|
for _, x := range t1.Ord {
|
|
// We *don't* need to solve unusedField
|
|
unusedField := &interfaces.ExprAny{}
|
|
mapped[x] = unusedField
|
|
if x == field { // the one we care about
|
|
mapped[x] = dummyOut
|
|
}
|
|
ordered = append(ordered, x)
|
|
}
|
|
// We map to dummyOut which is the return type
|
|
// and has the same type of the field we want!
|
|
mapped[field] = dummyOut // redundant =D
|
|
invar = &interfaces.EqualityWrapStructInvariant{
|
|
Expr1: dummyStruct,
|
|
Expr2Map: mapped,
|
|
Expr2Ord: ordered,
|
|
}
|
|
// We only want to add this weird thing if the
|
|
// field actually exists. Otherwise ignore it.
|
|
if _, exists := t1.Map[field]; field != "" && exists {
|
|
invariants = append(invariants, invar)
|
|
}
|
|
}
|
|
if t2 != nil {
|
|
invar = &interfaces.EqualsInvariant{
|
|
Expr: dummyOptional,
|
|
Type: t2,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
invar = &interfaces.EqualsInvariant{
|
|
Expr: dummyOut,
|
|
Type: t2,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
}
|
|
|
|
// XXX: if t1 or t2 are missing, we could also return a
|
|
// new generator for later if we learn new information,
|
|
// but we'd have to be careful to not do it infinitely.
|
|
|
|
// TODO: do we return this relationship with ExprCall?
|
|
invar = &interfaces.EqualityWrapCallInvariant{
|
|
// TODO: should Expr1 and Expr2 be reversed???
|
|
Expr1: cfavInvar.Expr,
|
|
//Expr2Func: cfavInvar.Func, // same as below
|
|
Expr2Func: expr,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
// TODO: are there any other invariants we should build?
|
|
return invariants, nil // generator return
|
|
}
|
|
// We couldn't tell the solver anything it didn't already know!
|
|
return nil, fmt.Errorf("couldn't generate new invariants")
|
|
}
|
|
invar = &interfaces.GeneratorInvariant{
|
|
Func: fn,
|
|
}
|
|
invariants = append(invariants, invar)
|
|
|
|
return invariants, nil
|
|
}
|
|
|
|
// Build is run to turn the polymorphic, undetermined function, into the
|
|
// specific statically typed version. It is usually run after Unify completes,
|
|
// and must be run before Info() and any of the other Func interface methods are
|
|
// used. This function is idempotent, as long as the arg isn't changed between
|
|
// runs.
|
|
func (obj *StructLookupOptionalFunc) Build(typ *types.Type) (*types.Type, error) {
|
|
// typ is the KindFunc signature we're trying to build...
|
|
if typ.Kind != types.KindFunc {
|
|
return nil, fmt.Errorf("input type must be of kind func")
|
|
}
|
|
|
|
if len(typ.Ord) != 3 {
|
|
return nil, fmt.Errorf("the structlookup function needs exactly three args")
|
|
}
|
|
if typ.Out == nil {
|
|
return nil, fmt.Errorf("return type of function must be specified")
|
|
}
|
|
if typ.Map == nil {
|
|
return nil, fmt.Errorf("invalid input type")
|
|
}
|
|
|
|
tStruct, exists := typ.Map[typ.Ord[0]]
|
|
if !exists || tStruct == nil {
|
|
return nil, fmt.Errorf("first arg must be specified")
|
|
}
|
|
|
|
tField, exists := typ.Map[typ.Ord[1]]
|
|
if !exists || tField == nil {
|
|
return nil, fmt.Errorf("second arg must be specified")
|
|
}
|
|
if err := tField.Cmp(types.TypeStr); err != nil {
|
|
return nil, errwrap.Wrapf(err, "field must be an str")
|
|
}
|
|
|
|
tOptional, exists := typ.Map[typ.Ord[2]]
|
|
if !exists || tOptional == nil {
|
|
return nil, fmt.Errorf("third arg must be specified")
|
|
}
|
|
if err := tOptional.Cmp(typ.Out); err != nil {
|
|
return nil, errwrap.Wrapf(err, "optional arg must match return type")
|
|
}
|
|
|
|
// NOTE: We actually don't know which field this is, only its type! we
|
|
// could have cached the discovered field during Polymorphisms(), but it
|
|
// turns out it's not actually necessary for us to know it to build the
|
|
// struct.
|
|
obj.Type = tStruct // struct type
|
|
obj.Out = typ.Out // type of return value
|
|
|
|
return obj.sig(), nil
|
|
}
|
|
|
|
// Validate tells us if the input struct takes a valid form.
|
|
func (obj *StructLookupOptionalFunc) Validate() error {
|
|
if obj.Type == nil { // build must be run first
|
|
return fmt.Errorf("type is still unspecified")
|
|
}
|
|
if obj.Type.Kind != types.KindStruct {
|
|
return fmt.Errorf("type must be a kind of struct")
|
|
}
|
|
if obj.Out == nil {
|
|
return fmt.Errorf("return type must be specified")
|
|
}
|
|
|
|
// TODO: can we do better and validate more aspects here?
|
|
|
|
return nil
|
|
}
|
|
|
|
// Info returns some static info about itself. Build must be called before this
|
|
// will return correct data.
|
|
func (obj *StructLookupOptionalFunc) Info() *interfaces.Info {
|
|
var sig *types.Type
|
|
if obj.Type != nil { // don't panic if called speculatively
|
|
// TODO: can obj.Out be nil (a partial) ?
|
|
sig = obj.sig() // helper
|
|
}
|
|
return &interfaces.Info{
|
|
Pure: true,
|
|
Memo: false,
|
|
Sig: sig, // func kind
|
|
Err: obj.Validate(),
|
|
}
|
|
}
|
|
|
|
// helper
|
|
func (obj *StructLookupOptionalFunc) sig() *types.Type {
|
|
return types.NewType(fmt.Sprintf("func(%s %s, %s str, %s %s) %s", structLookupOptionalArgNameStruct, obj.Type.String(), structLookupOptionalArgNameField, structLookupOptionalArgNameOptional, obj.Out.String(), obj.Out.String()))
|
|
}
|
|
|
|
// Init runs some startup code for this function.
|
|
func (obj *StructLookupOptionalFunc) Init(init *interfaces.Init) error {
|
|
obj.init = init
|
|
return nil
|
|
}
|
|
|
|
// Stream returns the changing values that this func has over time.
|
|
func (obj *StructLookupOptionalFunc) Stream(ctx context.Context) error {
|
|
defer close(obj.init.Output) // the sender closes
|
|
for {
|
|
select {
|
|
case input, ok := <-obj.init.Input:
|
|
if !ok {
|
|
return nil // can't output any more
|
|
}
|
|
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
|
|
// return errwrap.Wrapf(err, "wrong function input")
|
|
//}
|
|
|
|
if obj.last != nil && input.Cmp(obj.last) == nil {
|
|
continue // value didn't change, skip it
|
|
}
|
|
obj.last = input // store for next
|
|
|
|
st := (input.Struct()[structLookupOptionalArgNameStruct]).(*types.StructValue)
|
|
field := input.Struct()[structLookupOptionalArgNameField].Str()
|
|
optional := input.Struct()[structLookupOptionalArgNameOptional]
|
|
|
|
if field == "" {
|
|
return fmt.Errorf("received empty field")
|
|
}
|
|
if obj.field == "" {
|
|
obj.field = field // store first field
|
|
}
|
|
if field != obj.field {
|
|
return fmt.Errorf("input field changed from: `%s`, to: `%s`", obj.field, field)
|
|
}
|
|
|
|
// We know the result of this lookup statically at
|
|
// compile time, but for simplicity we check each time
|
|
// here anyways. Maybe one day there will be a fancy
|
|
// reason why this might vary over time.
|
|
var result types.Value
|
|
val, exists := st.Lookup(field)
|
|
if exists {
|
|
result = val
|
|
} else {
|
|
result = optional
|
|
}
|
|
|
|
// if previous input was `2 + 4`, but now it
|
|
// changed to `1 + 5`, the result is still the
|
|
// same, so we can skip sending an update...
|
|
if obj.result != nil && result.Cmp(obj.result) == nil {
|
|
continue // result didn't change
|
|
}
|
|
obj.result = result // store new result
|
|
|
|
case <-ctx.Done():
|
|
return nil
|
|
}
|
|
|
|
select {
|
|
case obj.init.Output <- obj.result: // send
|
|
case <-ctx.Done():
|
|
return nil
|
|
}
|
|
}
|
|
}
|