Files
mgmt/lang/funcs/simplepoly/simplepoly.go
James Shubin 3e31ee9455 legal: Additional permission under GNU GPL version 3 section 7
With the recent merging of embedded package imports and the entry CLI
package, it is now possible for users to build in mcl code into a single
binary. This additional permission makes it explicitly clear that this
is permitted to make it easier for those users. The condition is phrased
so that the terms can be "patched" by the original author if it's
necessary for the project. For example, if the name of the language
(mcl) changes, has a differently named new version, someone finds a
phrasing improvement or a legal loophole, or for some other
reasonable circumstance. Now go write some beautiful embedded tools!
2024-03-05 01:04:09 -05:00

636 lines
20 KiB
Go

// Mgmt
// Copyright (C) 2013-2024+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package simplepoly
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
langUtil "github.com/purpleidea/mgmt/lang/util"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// DirectInterface specifies whether we should use the direct function
// API or not. If we don't use it, then these simple functions are
// wrapped with the struct below.
DirectInterface = false // XXX: fix any bugs and set to true!
// AllowSimplePolyVariantDefinitions specifies whether we're allowed to
// include the `variant` type in definitons for simple poly functions.
// Long term, it's probably better to have this be false because it adds
// complexity into this simple poly API, and the root of which is the
// argComplexCmp which is only moderately powerful, but I figured I'd
// try and allow this for now because I liked how elegant the definition
// of the len() function was.
AllowSimplePolyVariantDefinitions = true
)
// RegisteredFuncs maps a function name to the corresponding static, pure funcs.
var RegisteredFuncs = make(map[string][]*types.FuncValue) // must initialize
// Register registers a simple, static, pure, polymorphic function. It is easier
// to use than the raw function API, but also limits you to small, finite
// numbers of different polymorphic type signatures per function name. You can
// also register functions which return types containing variants, if you want
// automatic matching based on partial types as well. Some complex patterns are
// not possible with this API. Implementing a function like `printf` would not
// be possible. Implementing a function which counts the number of elements in a
// list would be.
func Register(name string, fns []*types.FuncValue) {
if _, exists := RegisteredFuncs[name]; exists {
panic(fmt.Sprintf("a simple polyfunc named %s is already registered", name))
}
if len(fns) == 0 {
panic("no functions specified for simple polyfunc")
}
// check for uniqueness in type signatures
typs := []*types.Type{}
for i, f := range fns {
if f.T == nil {
panic(fmt.Sprintf("polyfunc %s contains a nil type signature", name))
}
if f.T.Kind != types.KindFunc { // even when this includes a variant
panic(fmt.Sprintf("polyfunc %s must be of kind func", name))
}
if !AllowSimplePolyVariantDefinitions && f.T.HasVariant() {
panic(fmt.Sprintf("polyfunc %s contains a variant type signature at index: %d", name, i))
}
typs = append(typs, f.T)
}
if err := langUtil.HasDuplicateTypes(typs); err != nil {
panic(fmt.Sprintf("polyfunc %s has a duplicate implementation: %+v", name, err))
}
_, err := consistentArgs(fns)
if err != nil {
panic(fmt.Sprintf("polyfunc %s has inconsistent arg names: %+v", name, err))
}
RegisteredFuncs[name] = fns // store a copy for ourselves
// register a copy in the main function database
funcs.Register(name, func() interfaces.Func { return &WrappedFunc{Name: name, Fns: fns} })
}
// ModuleRegister is exactly like Register, except that it registers within a
// named module. This is a helper function.
func ModuleRegister(module, name string, fns []*types.FuncValue) {
Register(module+funcs.ModuleSep+name, fns)
}
// consistentArgs returns the list of arg names across all the functions or
// errors if one consistent list could not be found.
func consistentArgs(fns []*types.FuncValue) ([]string, error) {
if len(fns) == 0 {
return nil, fmt.Errorf("no functions specified for simple polyfunc")
}
seq := []string{}
for _, x := range fns {
typ := x.Type()
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("expected %s, got %s", types.KindFunc, typ.Kind)
}
ord := typ.Ord
// check
l := len(seq)
if m := len(ord); m < l {
l = m // min
}
for i := 0; i < l; i++ { // check shorter list
if seq[i] != ord[i] {
return nil, fmt.Errorf("arg name at index %d differs (%s != %s)", i, seq[i], ord[i])
}
}
seq = ord // keep longer version!
}
return seq, nil
}
var _ interfaces.PolyFunc = &WrappedFunc{} // ensure it meets this expectation
// WrappedFunc is a scaffolding function struct which fulfills the boiler-plate
// for the function API, but that can run a very simple, static, pure,
// polymorphic function.
type WrappedFunc struct {
Name string
Fns []*types.FuncValue // list of possible functions
fn *types.FuncValue // the concrete version of our chosen function
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *WrappedFunc) String() string {
return fmt.Sprintf("%s @ %p", obj.Name, obj) // be more unique!
}
// ArgGen returns the Nth arg name for this function.
func (obj *WrappedFunc) ArgGen(index int) (string, error) {
seq, err := consistentArgs(obj.Fns)
if err != nil {
return "", err
}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *WrappedFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
if len(obj.Fns) == 0 {
return nil, fmt.Errorf("no matching signatures for simple polyfunc")
}
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// Special case to help it solve faster. We still include the generator,
// in the chance that the relationship between the args is an important
// linkage that we should be specifying somehow...
if len(obj.Fns) == 1 {
fn := obj.Fns[0]
if fn == nil {
// programming error
return nil, fmt.Errorf("simple poly function value is nil")
}
typ := fn.T
if typ == nil {
// programming error
return nil, fmt.Errorf("simple poly function type is nil")
}
invar = &interfaces.EqualsInvariant{
Expr: expr,
Type: typ,
}
invariants = append(invariants, invar)
}
dummyOut := &interfaces.ExprAny{} // corresponds to the out type
// return type is currently unknown
invar = &interfaces.AnyInvariant{
Expr: dummyOut, // make sure to include it so we know it solves
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
// any number of args are permitted
// helper function to build our complex func invariants
buildInvar := func(typ *types.Type) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{}
// assume this is a types.KindFunc
for i, x := range typ.Ord {
t := typ.Map[x]
if t == nil {
// programming error
return nil, fmt.Errorf("unexpected func nil arg (%d) type", i)
}
argName, err := obj.ArgGen(i)
if err != nil {
return nil, err
}
dummyArg := &interfaces.ExprAny{}
invar = &interfaces.EqualsInvariant{
Expr: dummyArg,
Type: t,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: dummyArg,
Expr2: cfavInvar.Args[i],
}
invariants = append(invariants, invar)
mapped[argName] = dummyArg
ordered = append(ordered, argName)
}
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
if typ.Out == nil {
// programming error
return nil, fmt.Errorf("unexpected func nil return type")
}
// remember to add the relationship to the
// return type of the functions as well...
invar = &interfaces.EqualsInvariant{
Expr: dummyOut,
Type: typ.Out,
}
invariants = append(invariants, invar)
return invariants, nil
}
// argCmp trims down the list of possible types...
// this makes our exclusive invariants smaller, and
// easier to solve without combinatorial slow recursion
argCmp := func(typ *types.Type) bool {
if len(cfavInvar.Args) != len(typ.Ord) {
return false // arg length differs
}
for i, x := range cfavInvar.Args {
if t, err := x.Type(); err == nil {
if t.Cmp(typ.Map[typ.Ord[i]]) != nil {
return false // impossible!
}
}
// is the type already known as solved?
if t, exists := solved[x]; exists { // alternate way to lookup type
if t.Cmp(typ.Map[typ.Ord[i]]) != nil {
return false // impossible!
}
}
}
return true // possible
}
argComplexCmp := func(typ *types.Type) (*types.Type, bool) {
if !typ.HasVariant() {
return typ, argCmp(typ)
}
mapped := make(map[string]*types.Type)
ordered := []string{}
out := typ.Out
if len(cfavInvar.Args) != len(typ.Ord) {
return nil, false // arg length differs
}
for i, x := range cfavInvar.Args {
name := typ.Ord[i]
if t, err := x.Type(); err == nil {
if _, err := t.ComplexCmp(typ.Map[typ.Ord[i]]); err != nil {
return nil, false // impossible!
}
mapped[name] = t // found it
}
// is the type already known as solved?
if t, exists := solved[x]; exists { // alternate way to lookup type
if _, err := t.ComplexCmp(typ.Map[typ.Ord[i]]); err != nil {
return nil, false // impossible!
}
// check it matches the above type
if oldT, exists := mapped[name]; exists && t.Cmp(oldT) != nil {
return nil, false // impossible!
}
mapped[name] = t // found it
}
if _, exists := mapped[name]; !exists {
// impossible, but for a
// different reason: we don't
// have enough information to
// plausibly allow this type to
// pass through, because we'd
// leave a variant in, so skip
// it. We'll probably fail in
// the end with a misleading
// "only recursive solutions
// left" error, but it just
// means we can't solve this!
return nil, false
}
ordered = append(ordered, name)
}
// if we happen to know the type of the return expr
if t, exists := solved[cfavInvar.Expr]; exists {
if out != nil && t.Cmp(out) != nil {
return nil, false // inconsistent!
}
out = t // learn!
}
return &types.Type{
Kind: types.KindFunc,
Map: mapped,
Ord: ordered,
Out: out,
}, true // possible
}
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
ors := []interfaces.Invariant{} // solve only one from this list
for _, f := range obj.Fns { // operator func types
typ := f.T
if typ == nil {
return nil, fmt.Errorf("nil type signature found")
}
if typ.Kind != types.KindFunc {
// programming error
return nil, fmt.Errorf("type must be a kind of func")
}
// filter out impossible types, and on success,
// use the replacement type that we found here!
// this is because the input might be a variant
// and after processing this, we get a concrete
// type that can be substituted in here instead
if typ, ok = argComplexCmp(typ); !ok {
continue // not a possible match
}
if typ.HasVariant() {
// programming error
return nil, fmt.Errorf("a variant type snuck through: %+v", typ)
}
invars, err := buildInvar(typ)
if err != nil {
return nil, err
}
// all of these need to be true together
and := &interfaces.ConjunctionInvariant{
Invariants: invars,
}
ors = append(ors, and) // one solution added!
}
if len(ors) == 0 {
return nil, fmt.Errorf("no matching signatures for simple poly func could be found")
}
// TODO: To improve the filtering, it would be
// excellent if we could examine the return type in
// `solved` somehow (if it is known) and use that to
// trim our list of exclusives down even further! The
// smaller the exclusives are, the faster everything in
// the solver can run.
invar = &interfaces.ExclusiveInvariant{
Invariants: ors, // one and only one of these should be true
}
if len(ors) == 1 {
invar = ors[0] // there should only be one
}
invariants = append(invariants, invar)
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *WrappedFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
if len(obj.Fns) == 0 {
return nil, fmt.Errorf("no matching signatures for simple polyfunc")
}
// filter out anything that's incompatible with the partialType
typs := []*types.Type{}
for _, f := range obj.Fns {
// TODO: if status is "both", should we skip as too difficult?
_, err := f.T.ComplexCmp(partialType)
// can an f.T with a variant compare with a partial ? (yes)
if err != nil {
continue
}
typs = append(typs, f.T)
}
return typs, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used.
func (obj *WrappedFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
index, err := langUtil.FnMatch(typ, obj.Fns)
if err != nil {
return nil, err
}
newTyp := obj.buildFunction(typ, index) // found match at this index
return newTyp, nil
}
// buildFunction builds our concrete static function, from the potentially
// abstract, possibly variant containing list of functions.
func (obj *WrappedFunc) buildFunction(typ *types.Type, ix int) *types.Type {
cp := obj.Fns[ix].Copy()
fn, ok := cp.(*types.FuncValue)
if !ok {
panic("unexpected type")
}
obj.fn = fn
// FIXME: if obj.fn.T == nil {} // occasionally this is nil, is it a bug?
obj.fn.T = typ.Copy() // overwrites any contained "variant" type
return obj.fn.T
}
// Validate makes sure we've built our struct properly. It is usually unused for
// normal functions that users can use directly.
func (obj *WrappedFunc) Validate() error {
if len(obj.Fns) == 0 {
return fmt.Errorf("missing list of functions")
}
// check for uniqueness in type signatures
typs := []*types.Type{}
for _, f := range obj.Fns {
if f.T == nil {
return fmt.Errorf("nil type signature found")
}
typs = append(typs, f.T)
}
if err := langUtil.HasDuplicateTypes(typs); err != nil {
return errwrap.Wrapf(err, "duplicate implementation found")
}
if obj.fn == nil { // build must be run first
return fmt.Errorf("a specific function has not been specified")
}
if obj.fn.T.Kind != types.KindFunc {
return fmt.Errorf("func must be a kind of func")
}
return nil
}
// Info returns some static info about itself.
func (obj *WrappedFunc) Info() *interfaces.Info {
var typ *types.Type
if obj.fn != nil { // don't panic if called speculatively
typ = obj.fn.Type()
}
return &interfaces.Info{
Pure: true,
Memo: false, // TODO: should this be something we specify here?
Sig: typ,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *WrappedFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *WrappedFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
if len(obj.fn.Type().Ord) > 0 {
return nil // can't output any more
}
// no inputs were expected, pass through once
}
if ok {
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
}
values := []types.Value{}
for _, name := range obj.fn.Type().Ord {
x := input.Struct()[name]
values = append(values, x)
}
if obj.init.Debug {
obj.init.Logf("Calling function with: %+v", values)
}
result, err := obj.fn.Call(values) // (Value, error)
if err != nil {
if obj.init.Debug {
obj.init.Logf("Function returned error: %+v", err)
}
return errwrap.Wrapf(err, "simple poly function errored")
}
if obj.init.Debug {
obj.init.Logf("Function returned with: %+v", result)
}
// TODO: do we want obj.result to be a pointer instead?
if obj.result == result {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
if len(obj.fn.Type().Ord) == 0 {
return nil // no more values, we're a pure func
}
case <-ctx.Done():
return nil
}
}
}