Files
mgmt/lang/funcs/list_lookup_default_func.go
James Shubin 3e31ee9455 legal: Additional permission under GNU GPL version 3 section 7
With the recent merging of embedded package imports and the entry CLI
package, it is now possible for users to build in mcl code into a single
binary. This additional permission makes it explicitly clear that this
is permitted to make it easier for those users. The condition is phrased
so that the terms can be "patched" by the original author if it's
necessary for the project. For example, if the name of the language
(mcl) changes, has a differently named new version, someone finds a
phrasing improvement or a legal loophole, or for some other
reasonable circumstance. Now go write some beautiful embedded tools!
2024-03-05 01:04:09 -05:00

501 lines
15 KiB
Go

// Mgmt
// Copyright (C) 2013-2024+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package funcs
import (
"context"
"fmt"
"math"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// ListLookupDefaultFuncName is the name this function is registered as.
ListLookupDefaultFuncName = "list_lookup_default"
// arg names...
listLookupDefaultArgNameList = "list"
listLookupDefaultArgNameIndex = "index"
listLookupDefaultArgNameDefault = "default"
)
func init() {
Register(ListLookupDefaultFuncName, func() interfaces.Func { return &ListLookupDefaultFunc{} }) // must register the func and name
}
var _ interfaces.PolyFunc = &ListLookupDefaultFunc{} // ensure it meets this expectation
// ListLookupDefaultFunc is a list index lookup function. If you provide a
// negative index, then it will return the default value you specified for this
// function.
type ListLookupDefaultFunc struct {
Type *types.Type // Kind == List, that is used as the list we lookup in
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *ListLookupDefaultFunc) String() string {
return ListLookupDefaultFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *ListLookupDefaultFunc) ArgGen(index int) (string, error) {
seq := []string{listLookupDefaultArgNameList, listLookupDefaultArgNameIndex, listLookupDefaultArgNameDefault}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *ListLookupDefaultFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(list T1, index int, default T3) T3
// (list: []T3 => T3 aka T1 => T3)
listName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
indexName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
defaultName, err := obj.ArgGen(2)
if err != nil {
return nil, err
}
dummyList := &interfaces.ExprAny{} // corresponds to the list type
dummyIndex := &interfaces.ExprAny{} // corresponds to the index type
dummyDefault := &interfaces.ExprAny{} // corresponds to the default type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
// default type and out are the same
invar = &interfaces.EqualityInvariant{
Expr1: dummyDefault,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// relationship between T1 and T3
invar = &interfaces.EqualityWrapListInvariant{
Expr1: dummyList,
Expr2Val: dummyDefault,
}
invariants = append(invariants, invar)
// the index has to be an int
invar = &interfaces.EqualsInvariant{
Expr: dummyIndex,
Type: types.TypeInt,
}
invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{listName, indexName, defaultName}
mapped[listName] = dummyList
mapped[indexName] = dummyIndex
mapped[defaultName] = dummyDefault
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 3 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyList,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyIndex,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[2],
Expr2: dummyDefault,
}
invariants = append(invariants, invar)
// If we figure out either of these types, we'll know
// the full type...
var t1 *types.Type // list type
var t3 *types.Type // list val type
// validateArg0 checks: list T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
// we happen to have a list!
if k := typ.Kind; k != types.KindList {
return fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
if typ.Val == nil {
// programming error
return fmt.Errorf("list is missing type")
}
if err := typ.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
if err := typ.Val.Cmp(t3); t3 != nil && err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
// learn!
t1 = typ
t3 = typ.Val
return nil
}
// validateArg1 checks: list index
validateArg1 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if typ.Kind != types.KindInt {
return errwrap.Wrapf(err, "input index type was inconsistent")
}
return nil
}
// validateArg2 checks: list val T3
validateArg2 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if err := typ.Cmp(t3); t3 != nil && err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
if t1 != nil {
if err := typ.Cmp(t1.Val); err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
}
t := &types.Type{ // build t1
Kind: types.KindList,
Val: typ, // t3
}
if t3 != nil {
if err := t.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
//t1 = t // learn!
}
// learn!
t1 = t
t3 = typ
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t3 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first list arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t3 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first list arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known?
// this only checks if this is an int
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second index arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type
// this only checks if this is an int
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second index arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[2].Type(); err == nil { // is it known?
// this sets t1 and t3 on success if it learned
if err := validateArg2(typ); err != nil {
return nil, errwrap.Wrapf(err, "third default arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[2]]; exists { // alternate way to lookup type
// this sets t1 and t3 on success if it learned
if err := validateArg2(typ); err != nil {
return nil, errwrap.Wrapf(err, "third default arg type is inconsistent")
}
}
// XXX: if the types aren't know statically?
if t1 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyList,
Type: t1,
}
invariants = append(invariants, invar)
}
if t3 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyDefault,
Type: t3,
}
invariants = append(invariants, invar)
}
// XXX: if t{1..2} are missing, we could also return a
// new generator for later if we learn new information,
// but we'd have to be careful to not do it infinitely.
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *ListLookupDefaultFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 3 {
return nil, fmt.Errorf("the listlookup function needs exactly three args")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
tList, exists := typ.Map[typ.Ord[0]]
if !exists || tList == nil {
return nil, fmt.Errorf("first arg must be specified")
}
tIndex, exists := typ.Map[typ.Ord[1]]
if !exists || tIndex == nil {
return nil, fmt.Errorf("second arg must be specified")
}
tDefault, exists := typ.Map[typ.Ord[2]]
if !exists || tDefault == nil {
return nil, fmt.Errorf("third arg must be specified")
}
if tIndex != nil && tIndex.Kind != types.KindInt {
return nil, fmt.Errorf("index must be int kind")
}
if err := tList.Val.Cmp(tDefault); err != nil {
return nil, errwrap.Wrapf(err, "default must match list val type")
}
if err := tList.Val.Cmp(typ.Out); err != nil {
return nil, errwrap.Wrapf(err, "return type must match list val type")
}
obj.Type = tList // list type
return obj.sig(), nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *ListLookupDefaultFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindList {
return fmt.Errorf("type must be a kind of list")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *ListLookupDefaultFunc) Info() *interfaces.Info {
var sig *types.Type
if obj.Type != nil { // don't panic if called speculatively
// TODO: can obj.Type.Key or obj.Type.Val be nil (a partial) ?
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: sig, // func kind
Err: obj.Validate(),
}
}
// helper
func (obj *ListLookupDefaultFunc) sig() *types.Type {
v := obj.Type.Val.String()
return types.NewType(fmt.Sprintf("func(%s %s, %s int, %s %s) %s", listLookupDefaultArgNameList, obj.Type.String(), listLookupDefaultArgNameIndex, listLookupDefaultArgNameDefault, v, v))
}
// Init runs some startup code for this function.
func (obj *ListLookupDefaultFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *ListLookupDefaultFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
l := (input.Struct()[listLookupDefaultArgNameList]).(*types.ListValue)
index := input.Struct()[listLookupDefaultArgNameIndex].Int()
def := input.Struct()[listLookupDefaultArgNameDefault]
// TODO: should we handle overflow by returning default?
if index > math.MaxInt { // max int size varies by arch
return fmt.Errorf("list index overflow, got: %d, max is: %d", index, math.MaxInt32)
}
// negative index values are "not found" here!
var result types.Value
val, exists := l.Lookup(int(index))
if exists {
result = val
} else {
result = def
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-ctx.Done():
return nil
}
}
}