Files
mgmt/converger/converger.go
James Shubin 3e31ee9455 legal: Additional permission under GNU GPL version 3 section 7
With the recent merging of embedded package imports and the entry CLI
package, it is now possible for users to build in mcl code into a single
binary. This additional permission makes it explicitly clear that this
is permitted to make it easier for those users. The condition is phrased
so that the terms can be "patched" by the original author if it's
necessary for the project. For example, if the name of the language
(mcl) changes, has a differently named new version, someone finds a
phrasing improvement or a legal loophole, or for some other
reasonable circumstance. Now go write some beautiful embedded tools!
2024-03-05 01:04:09 -05:00

496 lines
14 KiB
Go

// Mgmt
// Copyright (C) 2013-2024+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
// Package converger is a facility for reporting the converged state.
package converger
import (
"fmt"
"sort"
"sync"
"time"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap"
)
// New builds a new converger coordinator.
func New(timeout int) *Coordinator {
return &Coordinator{
timeout: timeout,
mutex: &sync.RWMutex{},
//lastid: 0,
status: make(map[*UID]struct{}),
//converged: false, // initial state
pokeChan: make(chan struct{}, 1), // must be buffered
readyChan: make(chan struct{}), // ready signal
//paused: false, // starts off as started
pauseSignal: make(chan struct{}),
//resumeSignal: make(chan struct{}), // happens on pause
//pausedAck: util.NewEasyAck(), // happens on pause
stateFns: make(map[string]func(bool) error),
smutex: &sync.RWMutex{},
closeChan: make(chan struct{}),
wg: &sync.WaitGroup{},
}
}
// Coordinator is the central converger engine.
type Coordinator struct {
// timeout must be zero (instant) or greater seconds to run. If it's -1
// then this is disabled, and we never run stateFns.
timeout int
// mutex is used for controlling access to status and lastid.
mutex *sync.RWMutex
// lastid contains the last uid we used for registration.
//lastid uint64
// status contains a reference to each active UID.
status map[*UID]struct{}
// converged stores the last convergence state. When this changes, we
// run the stateFns.
converged bool
// pokeChan receives a message every time we might need to re-calculate.
pokeChan chan struct{}
// readyChan closes to notify any interested parties that the main loop
// is running.
readyChan chan struct{}
// paused represents if this coordinator is paused or not.
paused bool
// pauseSignal closes to request a pause of this coordinator.
pauseSignal chan struct{}
// resumeSignal closes to request a resume of this coordinator.
resumeSignal chan struct{}
// pausedAck is used to send an ack message saying that we've paused.
pausedAck *util.EasyAck
// stateFns run on converged state changes.
stateFns map[string]func(bool) error
// smutex is used for controlling access to the stateFns map.
smutex *sync.RWMutex
// closeChan closes when we've been requested to shutdown.
closeChan chan struct{}
// wg waits for everything to finish.
wg *sync.WaitGroup
}
// Register creates a new UID which can be used to report converged state. You
// must Unregister each UID before Shutdown will be able to finish running.
func (obj *Coordinator) Register() *UID {
obj.wg.Add(1) // additional tracking for each UID
obj.mutex.Lock()
defer obj.mutex.Unlock()
//obj.lastid++
uid := &UID{
timeout: obj.timeout, // copy the timeout here
//id: obj.lastid,
//name: fmt.Sprintf("%d", obj.lastid), // some default
poke: obj.poke,
// timer
mutex: &sync.Mutex{},
timer: nil,
running: false,
wg: &sync.WaitGroup{},
}
uid.unregister = func() { obj.Unregister(uid) } // add unregister func
obj.status[uid] = struct{}{} // TODO: add converged state here?
return uid
}
// Unregister removes the UID from the converger coordinator. If you supply an
// invalid or unregistered uid to this function, it will panic. An unregistered
// UID is no longer part of the convergence checking.
func (obj *Coordinator) Unregister(uid *UID) {
defer obj.wg.Done() // additional tracking for each UID
obj.mutex.Lock()
defer obj.mutex.Unlock()
if _, exists := obj.status[uid]; !exists {
panic("uid is not registered")
}
uid.StopTimer() // ignore any errors
delete(obj.status, uid)
}
// Run starts the main loop for the converger coordinator. It is commonly run
// from a go routine. It blocks until the Shutdown method is run to close it.
// NOTE: when we have very short timeouts, if we start before all the resources
// have joined the map, then it might appear as if we converged before we did!
func (obj *Coordinator) Run(startPaused bool) {
obj.wg.Add(1)
wg := &sync.WaitGroup{} // needed for the startPaused
defer wg.Wait() // don't leave any leftover go routines running
if startPaused {
wg.Add(1)
go func() {
defer wg.Done()
obj.Pause() // ignore any errors
close(obj.readyChan)
}()
} else {
close(obj.readyChan) // we must wait till the wg.Add(1) has happened...
}
defer obj.wg.Done()
for {
// pause if one was requested...
select {
case <-obj.pauseSignal: // channel closes
obj.pausedAck.Ack() // send ack
// we are paused now, and waiting for resume or exit...
select {
case <-obj.resumeSignal: // channel closes
// resumed!
case <-obj.closeChan: // we can always escape
return
}
case _, ok := <-obj.pokeChan: // we got an event (re-calculate)
if !ok {
return
}
if err := obj.test(); err != nil {
// FIXME: what to do on error ?
}
case <-obj.closeChan: // we can always escape
return
}
}
}
// Ready blocks until the Run loop has started up. This is useful so that we
// don't run Shutdown before we've even started up properly.
func (obj *Coordinator) Ready() {
select {
case <-obj.readyChan:
}
}
// Shutdown sends a signal to the Run loop that it should exit. This blocks
// until it does.
func (obj *Coordinator) Shutdown() {
close(obj.closeChan)
obj.wg.Wait()
close(obj.pokeChan) // free memory?
}
// Pause pauses the coordinator. It should not be called on an already paused
// coordinator. It will block until the coordinator pauses with an
// acknowledgment, or until an exit is requested. If the latter happens it will
// error. It is NOT thread-safe with the Resume() method so only call either one
// at a time.
func (obj *Coordinator) Pause() error {
if obj.paused {
return fmt.Errorf("already paused")
}
obj.pausedAck = util.NewEasyAck()
obj.resumeSignal = make(chan struct{}) // build the resume signal
close(obj.pauseSignal)
// wait for ack (or exit signal)
select {
case <-obj.pausedAck.Wait(): // we got it!
// we're paused
case <-obj.closeChan:
return fmt.Errorf("closing")
}
obj.paused = true
return nil
}
// Resume unpauses the coordinator. It can be safely called on a brand-new
// coordinator that has just started running without incident. It is NOT
// thread-safe with the Pause() method, so only call either one at a time.
func (obj *Coordinator) Resume() {
// TODO: do we need a mutex around Resume?
if !obj.paused { // no need to unpause brand-new resources
return
}
obj.pauseSignal = make(chan struct{}) // rebuild for next pause
close(obj.resumeSignal)
obj.poke() // unblock and notice the resume if necessary
obj.paused = false
// no need to wait for it to resume
//return // implied
}
// poke sends a message to the coordinator telling it that it should re-evaluate
// whether we're converged or not. This does not block. Do not run this in a
// goroutine. It must not be called after Shutdown has been called.
func (obj *Coordinator) poke() {
// redundant
//if len(obj.pokeChan) > 0 {
// return
//}
select {
case obj.pokeChan <- struct{}{}:
default: // if chan is now full because more than one poke happened...
}
}
// IsConverged returns true if *every* registered uid has converged. If there
// are no registered UID's, then this will return true.
func (obj *Coordinator) IsConverged() bool {
for _, v := range obj.Status() {
if !v { // everyone must be converged for this to be true
return false
}
}
return true
}
// test evaluates whether we're converged or not and runs the state change. It
// is NOT thread-safe.
func (obj *Coordinator) test() error {
// TODO: add these checks elsewhere to prevent anything from running?
if obj.timeout < 0 {
return nil // nothing to do (only run if timeout is valid)
}
converged := obj.IsConverged()
defer func() {
obj.converged = converged // set this only at the end...
}()
if !converged {
if !obj.converged { // were we previously also not converged?
return nil // nothing to do
}
// we're doing a state change
// call the arbitrary functions (takes a read lock!)
return obj.runStateFns(false)
}
// we have converged!
if obj.converged { // were we previously also converged?
return nil // nothing to do
}
// call the arbitrary functions (takes a read lock!)
return obj.runStateFns(true)
}
// runStateFns runs the list of stored state functions.
func (obj *Coordinator) runStateFns(converged bool) error {
obj.smutex.RLock()
defer obj.smutex.RUnlock()
var keys []string
for k := range obj.stateFns {
keys = append(keys, k)
}
sort.Strings(keys)
var err error
for _, name := range keys { // run in deterministic order
fn := obj.stateFns[name]
// call an arbitrary function
e := fn(converged)
err = errwrap.Append(err, e) // list of errors
}
return err
}
// AddStateFn adds a state function to be run on change of converged state.
func (obj *Coordinator) AddStateFn(name string, stateFn func(bool) error) error {
obj.smutex.Lock()
defer obj.smutex.Unlock()
if _, exists := obj.stateFns[name]; exists {
return fmt.Errorf("a stateFn with that name already exists")
}
obj.stateFns[name] = stateFn
return nil
}
// RemoveStateFn removes a state function from running on change of converged
// state.
func (obj *Coordinator) RemoveStateFn(name string) error {
obj.smutex.Lock()
defer obj.smutex.Unlock()
if _, exists := obj.stateFns[name]; !exists {
return fmt.Errorf("a stateFn with that name doesn't exist")
}
delete(obj.stateFns, name)
return nil
}
// Status returns a map of the converged status of each UID.
func (obj *Coordinator) Status() map[*UID]bool {
status := make(map[*UID]bool)
obj.mutex.RLock() // take a read lock
defer obj.mutex.RUnlock()
for k := range obj.status {
status[k] = k.IsConverged()
}
return status
}
// Timeout returns the timeout in seconds that converger was created with. This
// is useful to avoid passing in the timeout value separately when you're
// already passing in the Coordinator struct.
func (obj *Coordinator) Timeout() int {
return obj.timeout
}
// UID represents one of the probes for the converger coordinator. It is created
// by calling the Register method of the Coordinator struct. It should be freed
// after use with Unregister.
type UID struct {
// timeout is a copy of the main timeout. It could eventually be used
// for per-UID timeouts too.
timeout int
// isConverged stores the convergence state of this particular UID.
isConverged bool
// poke stores a reference to the main poke function.
poke func()
// unregister stores a reference to the unregister function.
unregister func()
// timer
mutex *sync.Mutex
timer chan struct{}
running bool // is the timer running?
wg *sync.WaitGroup
}
// Unregister removes this UID from the converger coordinator. An unregistered
// UID is no longer part of the convergence checking.
func (obj *UID) Unregister() {
obj.unregister()
}
// IsConverged reports whether this UID is converged or not.
func (obj *UID) IsConverged() bool {
return obj.isConverged
}
// SetConverged sets the convergence state of this UID. This is used by the
// running timer if one is started. The timer will overwrite any value set by
// this method.
func (obj *UID) SetConverged(isConverged bool) {
obj.isConverged = isConverged
obj.poke() // notify of change
}
// ConvergedTimer adds a timeout to a select call and blocks until then.
// TODO: this means we could eventually have per resource converged timeouts
func (obj *UID) ConvergedTimer() <-chan time.Time {
// be clever: if i'm already converged, this timeout should block which
// avoids unnecessary new signals being sent! this avoids fast loops if
// we have a low timeout, or in particular a timeout == 0
if obj.IsConverged() {
// blocks the case statement in select forever!
return util.TimeAfterOrBlock(-1)
}
return util.TimeAfterOrBlock(int(obj.timeout))
}
// StartTimer runs a timer that sets us as converged on timeout. It also returns
// a handle to the StopTimer function which should be run before exit.
func (obj *UID) StartTimer() (func() error, error) {
obj.mutex.Lock()
defer obj.mutex.Unlock()
if obj.running {
return obj.StopTimer, fmt.Errorf("timer already started")
}
obj.timer = make(chan struct{})
obj.running = true
obj.wg.Add(1)
go func() {
defer obj.wg.Done()
for {
select {
case _, ok := <-obj.timer: // reset signal channel
if !ok {
return
}
obj.SetConverged(false)
case <-obj.ConvergedTimer():
obj.SetConverged(true) // converged!
select {
case _, ok := <-obj.timer: // reset signal channel
if !ok {
return
}
}
}
}
}()
return obj.StopTimer, nil
}
// ResetTimer resets the timer to zero.
func (obj *UID) ResetTimer() error {
obj.mutex.Lock()
defer obj.mutex.Unlock()
if obj.running {
obj.timer <- struct{}{} // send the reset message
return nil
}
return fmt.Errorf("timer hasn't been started")
}
// StopTimer stops the running timer.
func (obj *UID) StopTimer() error {
obj.mutex.Lock()
defer obj.mutex.Unlock()
if !obj.running {
return fmt.Errorf("timer isn't running")
}
close(obj.timer)
obj.wg.Wait()
obj.running = false
return nil
}