722 lines
21 KiB
Go
722 lines
21 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2017+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Affero General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Affero General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Affero General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package resources
|
|
|
|
import (
|
|
"fmt"
|
|
"reflect"
|
|
"sort"
|
|
"strings"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/purpleidea/mgmt/pgraph"
|
|
"github.com/purpleidea/mgmt/util"
|
|
)
|
|
|
|
type testGrouper struct {
|
|
// TODO: this algorithm may not be correct in all cases. replace if needed!
|
|
NonReachabilityGrouper // "inherit" what we want, and reimplement the rest
|
|
}
|
|
|
|
func (ag *testGrouper) name() string {
|
|
return "testGrouper"
|
|
}
|
|
|
|
func (ag *testGrouper) vertexMerge(v1, v2 pgraph.Vertex) (v pgraph.Vertex, err error) {
|
|
if err := VtoR(v1).GroupRes(VtoR(v2)); err != nil { // group them first
|
|
return nil, err
|
|
}
|
|
// HACK: update the name so it matches full list of self+grouped
|
|
obj := VtoR(v1)
|
|
names := strings.Split(obj.GetName(), ",") // load in stored names
|
|
for _, n := range obj.GetGroup() {
|
|
names = append(names, n.GetName()) // add my contents
|
|
}
|
|
names = util.StrRemoveDuplicatesInList(names) // remove duplicates
|
|
sort.Strings(names)
|
|
obj.SetName(strings.Join(names, ","))
|
|
return // success or fail, and no need to merge the actual vertices!
|
|
}
|
|
|
|
func (ag *testGrouper) edgeMerge(e1, e2 *pgraph.Edge) *pgraph.Edge {
|
|
// HACK: update the name so it makes a union of both names
|
|
n1 := strings.Split(e1.Name, ",") // load
|
|
n2 := strings.Split(e2.Name, ",") // load
|
|
names := append(n1, n2...)
|
|
names = util.StrRemoveDuplicatesInList(names) // remove duplicates
|
|
sort.Strings(names)
|
|
return pgraph.NewEdge(strings.Join(names, ","))
|
|
}
|
|
|
|
// helper function
|
|
func runGraphCmp(t *testing.T, g1, g2 *pgraph.Graph) {
|
|
AutoGroup(g1, &testGrouper{}) // edits the graph
|
|
err := GraphCmp(g1, g2)
|
|
if err != nil {
|
|
t.Logf(" actual (g1): %v%v", g1, fullPrint(g1))
|
|
t.Logf("expected (g2): %v%v", g2, fullPrint(g2))
|
|
t.Logf("Cmp error:")
|
|
t.Errorf("%v", err)
|
|
}
|
|
}
|
|
|
|
type NoopResTest struct {
|
|
NoopRes
|
|
}
|
|
|
|
func (obj *NoopResTest) GroupCmp(r Res) bool {
|
|
res, ok := r.(*NoopResTest)
|
|
if !ok {
|
|
return false
|
|
}
|
|
|
|
// TODO: implement this in vertexCmp for *testGrouper instead?
|
|
if strings.Contains(res.Name, ",") { // HACK
|
|
return false // element to be grouped is already grouped!
|
|
}
|
|
|
|
// group if they start with the same letter! (helpful hack for testing)
|
|
return obj.Name[0] == res.Name[0]
|
|
}
|
|
|
|
func NewNoopResTest(name string) *NoopResTest {
|
|
obj := &NoopResTest{
|
|
NoopRes: NoopRes{
|
|
BaseRes: BaseRes{
|
|
Name: name,
|
|
MetaParams: MetaParams{
|
|
AutoGroup: true, // always autogroup
|
|
},
|
|
},
|
|
},
|
|
}
|
|
return obj
|
|
}
|
|
|
|
// GraphCmp compares the topology of two graphs and returns nil if they're equal
|
|
// It also compares if grouped element groups are identical
|
|
func GraphCmp(g1, g2 *pgraph.Graph) error {
|
|
if n1, n2 := g1.NumVertices(), g2.NumVertices(); n1 != n2 {
|
|
return fmt.Errorf("graph g1 has %d vertices, while g2 has %d", n1, n2)
|
|
}
|
|
if e1, e2 := g1.NumEdges(), g2.NumEdges(); e1 != e2 {
|
|
return fmt.Errorf("graph g1 has %d edges, while g2 has %d", e1, e2)
|
|
}
|
|
|
|
var m = make(map[pgraph.Vertex]pgraph.Vertex) // g1 to g2 vertex correspondence
|
|
Loop:
|
|
// check vertices
|
|
for v1 := range g1.Adjacency() { // for each vertex in g1
|
|
|
|
l1 := strings.Split(VtoR(v1).GetName(), ",") // make list of everyone's names...
|
|
for _, x1 := range VtoR(v1).GetGroup() {
|
|
l1 = append(l1, x1.GetName()) // add my contents
|
|
}
|
|
l1 = util.StrRemoveDuplicatesInList(l1) // remove duplicates
|
|
sort.Strings(l1)
|
|
|
|
// inner loop
|
|
for v2 := range g2.Adjacency() { // does it match in g2 ?
|
|
|
|
l2 := strings.Split(VtoR(v2).GetName(), ",")
|
|
for _, x2 := range VtoR(v2).GetGroup() {
|
|
l2 = append(l2, x2.GetName())
|
|
}
|
|
l2 = util.StrRemoveDuplicatesInList(l2) // remove duplicates
|
|
sort.Strings(l2)
|
|
|
|
// does l1 match l2 ?
|
|
if ListStrCmp(l1, l2) { // cmp!
|
|
m[v1] = v2
|
|
continue Loop
|
|
}
|
|
}
|
|
return fmt.Errorf("graph g1, has no match in g2 for: %v", VtoR(v1).GetName())
|
|
}
|
|
// vertices (and groups) match :)
|
|
|
|
// check edges
|
|
for v1 := range g1.Adjacency() { // for each vertex in g1
|
|
v2 := m[v1] // lookup in map to get correspondance
|
|
// g1.Adjacency()[v1] corresponds to g2.Adjacency()[v2]
|
|
if e1, e2 := len(g1.Adjacency()[v1]), len(g2.Adjacency()[v2]); e1 != e2 {
|
|
return fmt.Errorf("graph g1, vertex(%v) has %d edges, while g2, vertex(%v) has %d", VtoR(v1).GetName(), e1, VtoR(v2).GetName(), e2)
|
|
}
|
|
|
|
for vv1, ee1 := range g1.Adjacency()[v1] {
|
|
vv2 := m[vv1]
|
|
ee2 := g2.Adjacency()[v2][vv2]
|
|
|
|
// these are edges from v1 -> vv1 via ee1 (graph 1)
|
|
// to cmp to edges from v2 -> vv2 via ee2 (graph 2)
|
|
|
|
// check: (1) vv1 == vv2 ? (we've already checked this!)
|
|
l1 := strings.Split(VtoR(vv1).GetName(), ",") // make list of everyone's names...
|
|
for _, x1 := range VtoR(vv1).GetGroup() {
|
|
l1 = append(l1, x1.GetName()) // add my contents
|
|
}
|
|
l1 = util.StrRemoveDuplicatesInList(l1) // remove duplicates
|
|
sort.Strings(l1)
|
|
|
|
l2 := strings.Split(VtoR(vv2).GetName(), ",")
|
|
for _, x2 := range VtoR(vv2).GetGroup() {
|
|
l2 = append(l2, x2.GetName())
|
|
}
|
|
l2 = util.StrRemoveDuplicatesInList(l2) // remove duplicates
|
|
sort.Strings(l2)
|
|
|
|
// does l1 match l2 ?
|
|
if !ListStrCmp(l1, l2) { // cmp!
|
|
return fmt.Errorf("graph g1 and g2 don't agree on: %v and %v", VtoR(vv1).GetName(), VtoR(vv2).GetName())
|
|
}
|
|
|
|
// check: (2) ee1 == ee2
|
|
if ee1.Name != ee2.Name {
|
|
return fmt.Errorf("graph g1 edge(%v) doesn't match g2 edge(%v)", ee1.Name, ee2.Name)
|
|
}
|
|
}
|
|
}
|
|
|
|
// check meta parameters
|
|
for v1 := range g1.Adjacency() { // for each vertex in g1
|
|
for v2 := range g2.Adjacency() { // does it match in g2 ?
|
|
s1, s2 := VtoR(v1).Meta().Sema, VtoR(v2).Meta().Sema
|
|
sort.Strings(s1)
|
|
sort.Strings(s2)
|
|
if !reflect.DeepEqual(s1, s2) {
|
|
return fmt.Errorf("vertex %s and vertex %s have different semaphores", VtoR(v1).GetName(), VtoR(v2).GetName())
|
|
}
|
|
}
|
|
}
|
|
|
|
return nil // success!
|
|
}
|
|
|
|
// ListStrCmp compares two lists of strings
|
|
func ListStrCmp(a, b []string) bool {
|
|
//fmt.Printf("CMP: %v with %v\n", a, b) // debugging
|
|
if a == nil && b == nil {
|
|
return true
|
|
}
|
|
if a == nil || b == nil {
|
|
return false
|
|
}
|
|
if len(a) != len(b) {
|
|
return false
|
|
}
|
|
for i := range a {
|
|
if a[i] != b[i] {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func fullPrint(g *pgraph.Graph) (str string) {
|
|
str += "\n"
|
|
for v := range g.Adjacency() {
|
|
if semas := VtoR(v).Meta().Sema; len(semas) > 0 {
|
|
str += fmt.Sprintf("* v: %v; sema: %v\n", VtoR(v).GetName(), semas)
|
|
} else {
|
|
str += fmt.Sprintf("* v: %v\n", VtoR(v).GetName())
|
|
}
|
|
// TODO: add explicit grouping data?
|
|
}
|
|
for v1 := range g.Adjacency() {
|
|
for v2, e := range g.Adjacency()[v1] {
|
|
str += fmt.Sprintf("* e: %v -> %v # %v\n", VtoR(v1).GetName(), VtoR(v2).GetName(), e.Name)
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func TestDurationAssumptions(t *testing.T) {
|
|
var d time.Duration
|
|
if (d == 0) != true {
|
|
t.Errorf("empty time.Duration is no longer equal to zero")
|
|
}
|
|
if (d > 0) != false {
|
|
t.Errorf("empty time.Duration is now greater than zero")
|
|
}
|
|
}
|
|
|
|
// all of the following test cases are laid out with the following semantics:
|
|
// * vertices which start with the same single letter are considered "like"
|
|
// * "like" elements should be merged
|
|
// * vertices can have any integer after their single letter "family" type
|
|
// * grouped vertices should have a name with a comma separated list of names
|
|
// * edges follow the same conventions about grouping
|
|
|
|
// empty graph
|
|
func TestPgraphGrouping1(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// single vertex
|
|
func TestPgraphGrouping2(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{ // grouping to limit variable scope
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
g1.AddVertex(a1)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
g2.AddVertex(a1)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// two vertices
|
|
func TestPgraphGrouping3(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
g1.AddVertex(a1, b1)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
g2.AddVertex(a1, b1)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// two vertices merge
|
|
func TestPgraphGrouping4(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
g1.AddVertex(a1, a2)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a := pgraph.NewVertex(NewNoopResTest("a1,a2"))
|
|
g2.AddVertex(a)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// three vertices merge
|
|
func TestPgraphGrouping5(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
a3 := pgraph.NewVertex(NewNoopResTest("a3"))
|
|
g1.AddVertex(a1, a2, a3)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a := pgraph.NewVertex(NewNoopResTest("a1,a2,a3"))
|
|
g2.AddVertex(a)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// three vertices, two merge
|
|
func TestPgraphGrouping6(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
g1.AddVertex(a1, a2, b1)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a := pgraph.NewVertex(NewNoopResTest("a1,a2"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
g2.AddVertex(a, b1)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// four vertices, three merge
|
|
func TestPgraphGrouping7(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
a3 := pgraph.NewVertex(NewNoopResTest("a3"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
g1.AddVertex(a1, a2, a3, b1)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a := pgraph.NewVertex(NewNoopResTest("a1,a2,a3"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
g2.AddVertex(a, b1)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// four vertices, two&two merge
|
|
func TestPgraphGrouping8(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
b2 := pgraph.NewVertex(NewNoopResTest("b2"))
|
|
g1.AddVertex(a1, a2, b1, b2)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a := pgraph.NewVertex(NewNoopResTest("a1,a2"))
|
|
b := pgraph.NewVertex(NewNoopResTest("b1,b2"))
|
|
g2.AddVertex(a, b)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// five vertices, two&three merge
|
|
func TestPgraphGrouping9(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
b2 := pgraph.NewVertex(NewNoopResTest("b2"))
|
|
b3 := pgraph.NewVertex(NewNoopResTest("b3"))
|
|
g1.AddVertex(a1, a2, b1, b2, b3)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a := pgraph.NewVertex(NewNoopResTest("a1,a2"))
|
|
b := pgraph.NewVertex(NewNoopResTest("b1,b2,b3"))
|
|
g2.AddVertex(a, b)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// three unique vertices
|
|
func TestPgraphGrouping10(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
g1.AddVertex(a1, b1, c1)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
g2.AddVertex(a1, b1, c1)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// three unique vertices, two merge
|
|
func TestPgraphGrouping11(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
b2 := pgraph.NewVertex(NewNoopResTest("b2"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
g1.AddVertex(a1, b1, b2, c1)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b := pgraph.NewVertex(NewNoopResTest("b1,b2"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
g2.AddVertex(a1, b, c1)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// simple merge 1
|
|
// a1 a2 a1,a2
|
|
// \ / >>> | (arrows point downwards)
|
|
// b b
|
|
func TestPgraphGrouping12(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
e2 := pgraph.NewEdge("e2")
|
|
g1.AddEdge(a1, b1, e1)
|
|
g1.AddEdge(a2, b1, e2)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a := pgraph.NewVertex(NewNoopResTest("a1,a2"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
e := pgraph.NewEdge("e1,e2")
|
|
g2.AddEdge(a, b1, e)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// simple merge 2
|
|
// b b
|
|
// / \ >>> | (arrows point downwards)
|
|
// a1 a2 a1,a2
|
|
func TestPgraphGrouping13(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
e2 := pgraph.NewEdge("e2")
|
|
g1.AddEdge(b1, a1, e1)
|
|
g1.AddEdge(b1, a2, e2)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a := pgraph.NewVertex(NewNoopResTest("a1,a2"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
e := pgraph.NewEdge("e1,e2")
|
|
g2.AddEdge(b1, a, e)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// triple merge
|
|
// a1 a2 a3 a1,a2,a3
|
|
// \ | / >>> | (arrows point downwards)
|
|
// b b
|
|
func TestPgraphGrouping14(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
a3 := pgraph.NewVertex(NewNoopResTest("a3"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
e2 := pgraph.NewEdge("e2")
|
|
e3 := pgraph.NewEdge("e3")
|
|
g1.AddEdge(a1, b1, e1)
|
|
g1.AddEdge(a2, b1, e2)
|
|
g1.AddEdge(a3, b1, e3)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a := pgraph.NewVertex(NewNoopResTest("a1,a2,a3"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
e := pgraph.NewEdge("e1,e2,e3")
|
|
g2.AddEdge(a, b1, e)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// chain merge
|
|
// a1 a1
|
|
// / \ |
|
|
// b1 b2 >>> b1,b2 (arrows point downwards)
|
|
// \ / |
|
|
// c1 c1
|
|
func TestPgraphGrouping15(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
b2 := pgraph.NewVertex(NewNoopResTest("b2"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
e2 := pgraph.NewEdge("e2")
|
|
e3 := pgraph.NewEdge("e3")
|
|
e4 := pgraph.NewEdge("e4")
|
|
g1.AddEdge(a1, b1, e1)
|
|
g1.AddEdge(a1, b2, e2)
|
|
g1.AddEdge(b1, c1, e3)
|
|
g1.AddEdge(b2, c1, e4)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b := pgraph.NewVertex(NewNoopResTest("b1,b2"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
e1 := pgraph.NewEdge("e1,e2")
|
|
e2 := pgraph.NewEdge("e3,e4")
|
|
g2.AddEdge(a1, b, e1)
|
|
g2.AddEdge(b, c1, e2)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// re-attach 1 (outer)
|
|
// technically the second possibility is valid too, depending on which order we
|
|
// merge edges in, and if we don't filter out any unnecessary edges afterwards!
|
|
// a1 a2 a1,a2 a1,a2
|
|
// | / | | \
|
|
// b1 / >>> b1 OR b1 / (arrows point downwards)
|
|
// | / | | /
|
|
// c1 c1 c1
|
|
func TestPgraphGrouping16(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
e2 := pgraph.NewEdge("e2")
|
|
e3 := pgraph.NewEdge("e3")
|
|
g1.AddEdge(a1, b1, e1)
|
|
g1.AddEdge(b1, c1, e2)
|
|
g1.AddEdge(a2, c1, e3)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a := pgraph.NewVertex(NewNoopResTest("a1,a2"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
e1 := pgraph.NewEdge("e1,e3")
|
|
e2 := pgraph.NewEdge("e2,e3") // e3 gets "merged through" to BOTH edges!
|
|
g2.AddEdge(a, b1, e1)
|
|
g2.AddEdge(b1, c1, e2)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// re-attach 2 (inner)
|
|
// a1 b2 a1
|
|
// | / |
|
|
// b1 / >>> b1,b2 (arrows point downwards)
|
|
// | / |
|
|
// c1 c1
|
|
func TestPgraphGrouping17(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
b2 := pgraph.NewVertex(NewNoopResTest("b2"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
e2 := pgraph.NewEdge("e2")
|
|
e3 := pgraph.NewEdge("e3")
|
|
g1.AddEdge(a1, b1, e1)
|
|
g1.AddEdge(b1, c1, e2)
|
|
g1.AddEdge(b2, c1, e3)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b := pgraph.NewVertex(NewNoopResTest("b1,b2"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
e2 := pgraph.NewEdge("e2,e3")
|
|
g2.AddEdge(a1, b, e1)
|
|
g2.AddEdge(b, c1, e2)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// re-attach 3 (double)
|
|
// similar to "re-attach 1", technically there is a second possibility for this
|
|
// a2 a1 b2 a1,a2
|
|
// \ | / |
|
|
// \ b1 / >>> b1,b2 (arrows point downwards)
|
|
// \ | / |
|
|
// c1 c1
|
|
func TestPgraphGrouping18(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
b1 := pgraph.NewVertex(NewNoopResTest("b1"))
|
|
b2 := pgraph.NewVertex(NewNoopResTest("b2"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
e2 := pgraph.NewEdge("e2")
|
|
e3 := pgraph.NewEdge("e3")
|
|
e4 := pgraph.NewEdge("e4")
|
|
g1.AddEdge(a1, b1, e1)
|
|
g1.AddEdge(b1, c1, e2)
|
|
g1.AddEdge(a2, c1, e3)
|
|
g1.AddEdge(b2, c1, e4)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result
|
|
{
|
|
a := pgraph.NewVertex(NewNoopResTest("a1,a2"))
|
|
b := pgraph.NewVertex(NewNoopResTest("b1,b2"))
|
|
c1 := pgraph.NewVertex(NewNoopResTest("c1"))
|
|
e1 := pgraph.NewEdge("e1,e3")
|
|
e2 := pgraph.NewEdge("e2,e3,e4") // e3 gets "merged through" to BOTH edges!
|
|
g2.AddEdge(a, b, e1)
|
|
g2.AddEdge(b, c1, e2)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// connected merge 0, (no change!)
|
|
// a1 a1
|
|
// \ >>> \ (arrows point downwards)
|
|
// a2 a2
|
|
func TestPgraphGroupingConnected0(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
g1.AddEdge(a1, a2, e1)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result ?
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
g2.AddEdge(a1, a2, e1)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|
|
|
|
// connected merge 1, (no change!)
|
|
// a1 a1
|
|
// \ \
|
|
// b >>> b (arrows point downwards)
|
|
// \ \
|
|
// a2 a2
|
|
func TestPgraphGroupingConnected1(t *testing.T) {
|
|
g1, _ := pgraph.NewGraph("g1") // original graph
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b := pgraph.NewVertex(NewNoopResTest("b"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
e2 := pgraph.NewEdge("e2")
|
|
g1.AddEdge(a1, b, e1)
|
|
g1.AddEdge(b, a2, e2)
|
|
}
|
|
g2, _ := pgraph.NewGraph("g2") // expected result ?
|
|
{
|
|
a1 := pgraph.NewVertex(NewNoopResTest("a1"))
|
|
b := pgraph.NewVertex(NewNoopResTest("b"))
|
|
a2 := pgraph.NewVertex(NewNoopResTest("a2"))
|
|
e1 := pgraph.NewEdge("e1")
|
|
e2 := pgraph.NewEdge("e2")
|
|
g2.AddEdge(a1, b, e1)
|
|
g2.AddEdge(b, a2, e2)
|
|
}
|
|
runGraphCmp(t, g1, g2)
|
|
}
|