547 lines
15 KiB
Go
547 lines
15 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2017+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Affero General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Affero General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Affero General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package pgraph represents the internal "pointer graph" that we use.
|
|
package pgraph
|
|
|
|
import (
|
|
"fmt"
|
|
"sort"
|
|
|
|
errwrap "github.com/pkg/errors"
|
|
)
|
|
|
|
// Graph is the graph structure in this library.
|
|
// The graph abstract data type (ADT) is defined as follows:
|
|
// * the directed graph arrows point from left to right ( -> )
|
|
// * the arrows point away from their dependencies (eg: arrows mean "before")
|
|
// * IOW, you might see package -> file -> service (where package runs first)
|
|
// * This is also the direction that the notify should happen in...
|
|
type Graph struct {
|
|
Name string
|
|
|
|
adjacency map[Vertex]map[Vertex]*Edge // Vertex -> Vertex (edge)
|
|
kv map[string]interface{} // some values associated with the graph
|
|
}
|
|
|
|
// Vertex is the primary vertex struct in this library. It can be anything that
|
|
// implements Stringer. The string output must be stable and unique in a graph.
|
|
type Vertex interface {
|
|
fmt.Stringer // String() string
|
|
}
|
|
|
|
// Edge is the primary edge struct in this library.
|
|
type Edge struct {
|
|
Name string
|
|
Notify bool // should we send a refresh notification along this edge?
|
|
|
|
refresh bool // is there a notify pending for the dest vertex ?
|
|
}
|
|
|
|
// Init initializes the graph which populates all the internal structures.
|
|
func (g *Graph) Init() error {
|
|
if g.Name == "" {
|
|
return fmt.Errorf("can't initialize graph with empty name")
|
|
}
|
|
|
|
g.adjacency = make(map[Vertex]map[Vertex]*Edge)
|
|
g.kv = make(map[string]interface{})
|
|
return nil
|
|
}
|
|
|
|
// NewGraph builds a new graph.
|
|
func NewGraph(name string) (*Graph, error) {
|
|
g := &Graph{
|
|
Name: name,
|
|
}
|
|
if err := g.Init(); err != nil {
|
|
return nil, err
|
|
}
|
|
return g, nil
|
|
}
|
|
|
|
// NewVertex returns whatever was passed in. This is for compatibility with the
|
|
// usage of the old NewVertex method. This is considered deprecated.
|
|
// FIXME: remove me
|
|
func NewVertex(x Vertex) Vertex {
|
|
return x
|
|
}
|
|
|
|
// NewEdge returns a new graph edge struct.
|
|
func NewEdge(name string) *Edge {
|
|
return &Edge{
|
|
Name: name,
|
|
}
|
|
}
|
|
|
|
// Refresh returns the pending refresh status of this edge.
|
|
func (obj *Edge) Refresh() bool {
|
|
return obj.refresh
|
|
}
|
|
|
|
// SetRefresh sets the pending refresh status of this edge.
|
|
func (obj *Edge) SetRefresh(b bool) {
|
|
obj.refresh = b
|
|
}
|
|
|
|
// Value returns a value stored alongside the graph in a particular key.
|
|
func (g *Graph) Value(key string) (interface{}, bool) {
|
|
val, exists := g.kv[key]
|
|
return val, exists
|
|
}
|
|
|
|
// SetValue sets a value to be stored alongside the graph in a particular key.
|
|
func (g *Graph) SetValue(key string, val interface{}) {
|
|
g.kv[key] = val
|
|
}
|
|
|
|
// Copy makes a copy of the graph struct.
|
|
func (g *Graph) Copy() *Graph {
|
|
newGraph := &Graph{
|
|
Name: g.Name,
|
|
adjacency: make(map[Vertex]map[Vertex]*Edge, len(g.adjacency)),
|
|
kv: g.kv,
|
|
}
|
|
for k, v := range g.adjacency {
|
|
newGraph.adjacency[k] = v // copy
|
|
}
|
|
return newGraph
|
|
}
|
|
|
|
// GetName returns the name of the graph.
|
|
func (g *Graph) GetName() string {
|
|
return g.Name
|
|
}
|
|
|
|
// SetName sets the name of the graph.
|
|
func (g *Graph) SetName(name string) {
|
|
g.Name = name
|
|
}
|
|
|
|
// AddVertex uses variadic input to add all listed vertices to the graph.
|
|
func (g *Graph) AddVertex(xv ...Vertex) {
|
|
for _, v := range xv {
|
|
if _, exists := g.adjacency[v]; !exists {
|
|
g.adjacency[v] = make(map[Vertex]*Edge)
|
|
}
|
|
}
|
|
}
|
|
|
|
// DeleteVertex deletes a particular vertex from the graph.
|
|
func (g *Graph) DeleteVertex(v Vertex) {
|
|
delete(g.adjacency, v)
|
|
for k := range g.adjacency {
|
|
delete(g.adjacency[k], v)
|
|
}
|
|
}
|
|
|
|
// AddEdge adds a directed edge to the graph from v1 to v2.
|
|
func (g *Graph) AddEdge(v1, v2 Vertex, e *Edge) {
|
|
// NOTE: this doesn't allow more than one edge between two vertexes...
|
|
g.AddVertex(v1, v2) // supports adding N vertices now
|
|
// TODO: check if an edge exists to avoid overwriting it!
|
|
// NOTE: VertexMerge() depends on overwriting it at the moment...
|
|
g.adjacency[v1][v2] = e
|
|
}
|
|
|
|
// DeleteEdge deletes a particular edge from the graph.
|
|
// FIXME: add test cases
|
|
func (g *Graph) DeleteEdge(e *Edge) {
|
|
for v1 := range g.adjacency {
|
|
for v2, edge := range g.adjacency[v1] {
|
|
if e == edge {
|
|
delete(g.adjacency[v1], v2)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// VertexMatchFn searches for a vertex in the graph and returns the vertex if
|
|
// one matches. It uses a user defined function to match. That function must
|
|
// return true on match, and an error if anything goes wrong.
|
|
func (g *Graph) VertexMatchFn(fn func(Vertex) (bool, error)) (Vertex, error) {
|
|
for v := range g.adjacency {
|
|
if b, err := fn(v); err != nil {
|
|
return nil, errwrap.Wrapf(err, "fn in VertexMatchFn() errored")
|
|
} else if b {
|
|
return v, nil
|
|
}
|
|
}
|
|
return nil, nil // nothing found
|
|
}
|
|
|
|
// HasVertex returns if the input vertex exists in the graph.
|
|
func (g *Graph) HasVertex(v Vertex) bool {
|
|
if _, exists := g.adjacency[v]; exists {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// NumVertices returns the number of vertices in the graph.
|
|
func (g *Graph) NumVertices() int {
|
|
return len(g.adjacency)
|
|
}
|
|
|
|
// NumEdges returns the number of edges in the graph.
|
|
func (g *Graph) NumEdges() int {
|
|
count := 0
|
|
for k := range g.adjacency {
|
|
count += len(g.adjacency[k])
|
|
}
|
|
return count
|
|
}
|
|
|
|
// Adjacency returns the adjacency map representing this graph. This is useful
|
|
// for users who which to operate on the raw data structure more efficiently.
|
|
// This works because maps are reference types so we can edit this at will.
|
|
func (g *Graph) Adjacency() map[Vertex]map[Vertex]*Edge {
|
|
return g.adjacency
|
|
}
|
|
|
|
// Vertices returns a randomly sorted slice of all vertices in the graph.
|
|
// The order is random, because the map implementation is intentionally so!
|
|
func (g *Graph) Vertices() []Vertex {
|
|
var vertices []Vertex
|
|
for k := range g.adjacency {
|
|
vertices = append(vertices, k)
|
|
}
|
|
return vertices
|
|
}
|
|
|
|
// VerticesChan returns a channel of all vertices in the graph.
|
|
func (g *Graph) VerticesChan() chan Vertex {
|
|
ch := make(chan Vertex)
|
|
go func(ch chan Vertex) {
|
|
for k := range g.adjacency {
|
|
ch <- k
|
|
}
|
|
close(ch)
|
|
}(ch)
|
|
return ch
|
|
}
|
|
|
|
// VertexSlice is a linear list of vertices. It can be sorted.
|
|
type VertexSlice []Vertex
|
|
|
|
func (vs VertexSlice) Len() int { return len(vs) }
|
|
func (vs VertexSlice) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] }
|
|
func (vs VertexSlice) Less(i, j int) bool { return vs[i].String() < vs[j].String() }
|
|
|
|
// VerticesSorted returns a sorted slice of all vertices in the graph
|
|
// The order is sorted by String() to avoid the non-determinism in the map type
|
|
func (g *Graph) VerticesSorted() []Vertex {
|
|
var vertices []Vertex
|
|
for k := range g.adjacency {
|
|
vertices = append(vertices, k)
|
|
}
|
|
sort.Sort(VertexSlice(vertices)) // add determinism
|
|
return vertices
|
|
}
|
|
|
|
// String makes the graph pretty print.
|
|
func (g *Graph) String() string {
|
|
return fmt.Sprintf("Vertices(%d), Edges(%d)", g.NumVertices(), g.NumEdges())
|
|
}
|
|
|
|
// IncomingGraphVertices returns an array (slice) of all directed vertices to
|
|
// vertex v (??? -> v). OKTimestamp should probably use this.
|
|
func (g *Graph) IncomingGraphVertices(v Vertex) []Vertex {
|
|
// TODO: we might be able to implement this differently by reversing
|
|
// the Adjacency graph and then looping through it again...
|
|
var s []Vertex
|
|
for k := range g.adjacency { // reverse paths
|
|
for w := range g.adjacency[k] {
|
|
if w == v {
|
|
s = append(s, k)
|
|
}
|
|
}
|
|
}
|
|
return s
|
|
}
|
|
|
|
// OutgoingGraphVertices returns an array (slice) of all vertices that vertex v
|
|
// points to (v -> ???). Poke should probably use this.
|
|
func (g *Graph) OutgoingGraphVertices(v Vertex) []Vertex {
|
|
var s []Vertex
|
|
for k := range g.adjacency[v] { // forward paths
|
|
s = append(s, k)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// GraphVertices returns an array (slice) of all vertices that connect to vertex v.
|
|
// This is the union of IncomingGraphVertices and OutgoingGraphVertices.
|
|
func (g *Graph) GraphVertices(v Vertex) []Vertex {
|
|
var s []Vertex
|
|
s = append(s, g.IncomingGraphVertices(v)...)
|
|
s = append(s, g.OutgoingGraphVertices(v)...)
|
|
return s
|
|
}
|
|
|
|
// IncomingGraphEdges returns all of the edges that point to vertex v (??? -> v).
|
|
func (g *Graph) IncomingGraphEdges(v Vertex) []*Edge {
|
|
var edges []*Edge
|
|
for v1 := range g.adjacency { // reverse paths
|
|
for v2, e := range g.adjacency[v1] {
|
|
if v2 == v {
|
|
edges = append(edges, e)
|
|
}
|
|
}
|
|
}
|
|
return edges
|
|
}
|
|
|
|
// OutgoingGraphEdges returns all of the edges that point from vertex v (v -> ???).
|
|
func (g *Graph) OutgoingGraphEdges(v Vertex) []*Edge {
|
|
var edges []*Edge
|
|
for _, e := range g.adjacency[v] { // forward paths
|
|
edges = append(edges, e)
|
|
}
|
|
return edges
|
|
}
|
|
|
|
// GraphEdges returns an array (slice) of all edges that connect to vertex v.
|
|
// This is the union of IncomingGraphEdges and OutgoingGraphEdges.
|
|
func (g *Graph) GraphEdges(v Vertex) []*Edge {
|
|
var edges []*Edge
|
|
edges = append(edges, g.IncomingGraphEdges(v)...)
|
|
edges = append(edges, g.OutgoingGraphEdges(v)...)
|
|
return edges
|
|
}
|
|
|
|
// DFS returns a depth first search for the graph, starting at the input vertex.
|
|
func (g *Graph) DFS(start Vertex) []Vertex {
|
|
var d []Vertex // discovered
|
|
var s []Vertex // stack
|
|
if _, exists := g.adjacency[start]; !exists {
|
|
return nil // TODO: error
|
|
}
|
|
v := start
|
|
s = append(s, v)
|
|
for len(s) > 0 {
|
|
v, s = s[len(s)-1], s[:len(s)-1] // s.pop()
|
|
|
|
if !VertexContains(v, d) { // if not discovered
|
|
d = append(d, v) // label as discovered
|
|
|
|
for _, w := range g.GraphVertices(v) {
|
|
s = append(s, w)
|
|
}
|
|
}
|
|
}
|
|
return d
|
|
}
|
|
|
|
// FilterGraph builds a new graph containing only vertices from the list.
|
|
func (g *Graph) FilterGraph(name string, vertices []Vertex) (*Graph, error) {
|
|
newGraph := &Graph{Name: name}
|
|
if err := newGraph.Init(); err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not run FilterGraph() properly")
|
|
}
|
|
for k1, x := range g.adjacency {
|
|
for k2, e := range x {
|
|
//log.Printf("Filter: %s -> %s # %s", k1.Name, k2.Name, e.Name)
|
|
if VertexContains(k1, vertices) || VertexContains(k2, vertices) {
|
|
newGraph.AddEdge(k1, k2, e)
|
|
}
|
|
}
|
|
}
|
|
return newGraph, nil
|
|
}
|
|
|
|
// DisconnectedGraphs returns a list containing the N disconnected graphs.
|
|
func (g *Graph) DisconnectedGraphs() ([]*Graph, error) {
|
|
graphs := []*Graph{}
|
|
var start Vertex
|
|
var d []Vertex // discovered
|
|
c := g.NumVertices()
|
|
for len(d) < c {
|
|
|
|
// get an undiscovered vertex to start from
|
|
for _, s := range g.Vertices() {
|
|
if !VertexContains(s, d) {
|
|
start = s
|
|
}
|
|
}
|
|
|
|
// dfs through the graph
|
|
dfs := g.DFS(start)
|
|
// filter all the collected elements into a new graph
|
|
newgraph, err := g.FilterGraph(g.Name, dfs)
|
|
if err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not run DisconnectedGraphs() properly")
|
|
}
|
|
// add number of elements found to found variable
|
|
d = append(d, dfs...) // extend
|
|
|
|
// append this new graph to the list
|
|
graphs = append(graphs, newgraph)
|
|
|
|
// if we've found all the elements, then we're done
|
|
// otherwise loop through to continue...
|
|
}
|
|
return graphs, nil
|
|
}
|
|
|
|
// InDegree returns the count of vertices that point to me in one big lookup map.
|
|
func (g *Graph) InDegree() map[Vertex]int {
|
|
result := make(map[Vertex]int)
|
|
for k := range g.adjacency {
|
|
result[k] = 0 // initialize
|
|
}
|
|
|
|
for k := range g.adjacency {
|
|
for z := range g.adjacency[k] {
|
|
result[z]++
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// OutDegree returns the count of vertices that point away in one big lookup map.
|
|
func (g *Graph) OutDegree() map[Vertex]int {
|
|
result := make(map[Vertex]int)
|
|
|
|
for k := range g.adjacency {
|
|
result[k] = 0 // initialize
|
|
for range g.adjacency[k] {
|
|
result[k]++
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// TopologicalSort returns the sort of graph vertices in that order.
|
|
// It is based on descriptions and code from wikipedia and rosetta code.
|
|
// TODO: add memoization, and cache invalidation to speed this up :)
|
|
func (g *Graph) TopologicalSort() ([]Vertex, error) { // kahn's algorithm
|
|
var L []Vertex // empty list that will contain the sorted elements
|
|
var S []Vertex // set of all nodes with no incoming edges
|
|
remaining := make(map[Vertex]int) // amount of edges remaining
|
|
|
|
for v, d := range g.InDegree() {
|
|
if d == 0 {
|
|
// accumulate set of all nodes with no incoming edges
|
|
S = append(S, v)
|
|
} else {
|
|
// initialize remaining edge count from indegree
|
|
remaining[v] = d
|
|
}
|
|
}
|
|
|
|
for len(S) > 0 {
|
|
last := len(S) - 1 // remove a node v from S
|
|
v := S[last]
|
|
S = S[:last]
|
|
L = append(L, v) // add v to tail of L
|
|
for n := range g.adjacency[v] {
|
|
// for each node n remaining in the graph, consume from
|
|
// remaining, so for remaining[n] > 0
|
|
if remaining[n] > 0 {
|
|
remaining[n]-- // remove edge from the graph
|
|
if remaining[n] == 0 { // if n has no other incoming edges
|
|
S = append(S, n) // insert n into S
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if graph has edges, eg if any value in rem is > 0
|
|
for c, in := range remaining {
|
|
if in > 0 {
|
|
for n := range g.adjacency[c] {
|
|
if remaining[n] > 0 {
|
|
return nil, fmt.Errorf("not a dag")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return L, nil
|
|
}
|
|
|
|
// Reachability finds the shortest path in a DAG from a to b, and returns the
|
|
// slice of vertices that matched this particular path including both a and b.
|
|
// It returns nil if a or b is nil, and returns empty list if no path is found.
|
|
// Since there could be more than one possible result for this operation, we
|
|
// arbitrarily choose one of the shortest possible. As a result, this should
|
|
// actually return a tree if we cared about correctness.
|
|
// This operates by a recursive algorithm; a more efficient version is likely.
|
|
// If you don't give this function a DAG, you might cause infinite recursion!
|
|
func (g *Graph) Reachability(a, b Vertex) []Vertex {
|
|
if a == nil || b == nil {
|
|
return nil
|
|
}
|
|
vertices := g.OutgoingGraphVertices(a) // what points away from a ?
|
|
if len(vertices) == 0 {
|
|
return []Vertex{} // nope
|
|
}
|
|
if VertexContains(b, vertices) {
|
|
return []Vertex{a, b} // found
|
|
}
|
|
// TODO: parallelize this with go routines?
|
|
var collected = make([][]Vertex, len(vertices))
|
|
pick := -1
|
|
for i, v := range vertices {
|
|
collected[i] = g.Reachability(v, b) // find b by recursion
|
|
if l := len(collected[i]); l > 0 {
|
|
// pick shortest path
|
|
// TODO: technically i should return a tree
|
|
if pick < 0 || l < len(collected[pick]) {
|
|
pick = i
|
|
}
|
|
}
|
|
}
|
|
if pick < 0 {
|
|
return []Vertex{} // nope
|
|
}
|
|
result := []Vertex{a} // tack on a
|
|
result = append(result, collected[pick]...)
|
|
return result
|
|
}
|
|
|
|
// VertexContains is an "in array" function to test for a vertex in a slice of vertices.
|
|
func VertexContains(needle Vertex, haystack []Vertex) bool {
|
|
for _, v := range haystack {
|
|
if needle == v {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// EdgeContains is an "in array" function to test for an edge in a slice of edges.
|
|
func EdgeContains(needle *Edge, haystack []*Edge) bool {
|
|
for _, v := range haystack {
|
|
if needle == v {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Reverse reverses a list of vertices.
|
|
func Reverse(vs []Vertex) []Vertex {
|
|
out := []Vertex{}
|
|
l := len(vs)
|
|
for i := range vs {
|
|
out = append(out, vs[l-i-1])
|
|
}
|
|
return out
|
|
}
|