Files
mgmt/engine/graph/autogroup/util.go
James Shubin 9969286224 engine: Resources package rewrite
This giant patch makes some much needed improvements to the code base.

* The engine has been rewritten and lives within engine/graph/
* All of the common interfaces and code now live in engine/
* All of the resources are in one package called engine/resources/
* The Res API can use different "traits" from engine/traits/
* The Res API has been simplified to hide many of the old internals
* The Watch & Process loops were previously inverted, but is now fixed
* The likelihood of package cycles has been reduced drastically
* And much, much more...

Unfortunately, some code had to be temporarily removed. The remote code
had to be taken out, as did the prometheus code. We hope to have these
back in new forms as soon as possible.
2018-04-19 01:10:58 -04:00

128 lines
4.4 KiB
Go

// Mgmt
// Copyright (C) 2013-2018+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package autogroup
import (
"github.com/purpleidea/mgmt/pgraph"
errwrap "github.com/pkg/errors"
)
// VertexMerge merges v2 into v1 by reattaching the edges where appropriate,
// and then by deleting v2 from the graph. Since more than one edge between two
// vertices is not allowed, duplicate edges are merged as well. an edge merge
// function can be provided if you'd like to control how you merge the edges!
func VertexMerge(g *pgraph.Graph, v1, v2 pgraph.Vertex, vertexMergeFn func(pgraph.Vertex, pgraph.Vertex) (pgraph.Vertex, error), edgeMergeFn func(pgraph.Edge, pgraph.Edge) pgraph.Edge) error {
// methodology
// 1) edges between v1 and v2 are removed
//Loop:
for k1 := range g.Adjacency() {
for k2 := range g.Adjacency()[k1] {
// v1 -> v2 || v2 -> v1
if (k1 == v1 && k2 == v2) || (k1 == v2 && k2 == v1) {
delete(g.Adjacency()[k1], k2) // delete map & edge
// NOTE: if we assume this is a DAG, then we can
// assume only v1 -> v2 OR v2 -> v1 exists, and
// we can break out of these loops immediately!
//break Loop
break
}
}
}
// 2) edges that point towards v2 from X now point to v1 from X (no dupes)
for _, x := range g.IncomingGraphVertices(v2) { // all to vertex v (??? -> v)
e := g.Adjacency()[x][v2] // previous edge
r, err := g.Reachability(x, v1)
if err != nil {
return err
}
// merge e with ex := g.Adjacency()[x][v1] if it exists!
if ex, exists := g.Adjacency()[x][v1]; exists && edgeMergeFn != nil && len(r) == 0 {
e = edgeMergeFn(e, ex)
}
if len(r) == 0 { // if not reachable, add it
g.AddEdge(x, v1, e) // overwrite edge
} else if edgeMergeFn != nil { // reachable, merge e through...
prev := x // initial condition
for i, next := range r {
if i == 0 {
// next == prev, therefore skip
continue
}
// this edge is from: prev, to: next
ex, _ := g.Adjacency()[prev][next] // get
ex = edgeMergeFn(ex, e)
g.Adjacency()[prev][next] = ex // set
prev = next
}
}
delete(g.Adjacency()[x], v2) // delete old edge
}
// 3) edges that point from v2 to X now point from v1 to X (no dupes)
for _, x := range g.OutgoingGraphVertices(v2) { // all from vertex v (v -> ???)
e := g.Adjacency()[v2][x] // previous edge
r, err := g.Reachability(v1, x)
if err != nil {
return err
}
// merge e with ex := g.Adjacency()[v1][x] if it exists!
if ex, exists := g.Adjacency()[v1][x]; exists && edgeMergeFn != nil && len(r) == 0 {
e = edgeMergeFn(e, ex)
}
if len(r) == 0 {
g.AddEdge(v1, x, e) // overwrite edge
} else if edgeMergeFn != nil { // reachable, merge e through...
prev := v1 // initial condition
for i, next := range r {
if i == 0 {
// next == prev, therefore skip
continue
}
// this edge is from: prev, to: next
ex, _ := g.Adjacency()[prev][next]
ex = edgeMergeFn(ex, e)
g.Adjacency()[prev][next] = ex
prev = next
}
}
delete(g.Adjacency()[v2], x)
}
// 4) merge and then remove the (now merged/grouped) vertex
if vertexMergeFn != nil { // run vertex merge function
if v, err := vertexMergeFn(v1, v2); err != nil {
return err
} else if v != nil { // replace v1 with the "merged" version...
// note: This branch isn't used if the vertexMergeFn
// decides to just merge logically on its own instead
// of actually returning something that we then merge.
v1 = v // TODO: ineffassign?
//*v1 = *v
}
}
g.DeleteVertex(v2) // remove grouped vertex
// 5) creation of a cyclic graph should throw an error
if _, err := g.TopologicalSort(); err != nil { // am i a dag or not?
return errwrap.Wrapf(err, "the TopologicalSort failed") // not a dag
}
return nil // success
}