Files
mgmt/lang/core/fmt/printf.go
James Shubin 37bb67dffd lang: Improve graph shape with speculative execution
Most of the time, we don't need to have a dynamic call sub graph, since
the actual function call could be represented statically as it
originally was before lambda functions were implemented. Simplifying the
graph shape has important performance benefits in terms of both keep the
graph smaller (memory, etc) and in avoiding the need to run transactions
at runtime (speed) to reshape the graph.

Co-authored-by: Samuel Gélineau <gelisam@gmail.com>
2025-04-27 22:14:51 -04:00

579 lines
18 KiB
Go

// Mgmt
// Copyright (C) James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package corefmt
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
unificationUtil "github.com/purpleidea/mgmt/lang/unification/util"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// PrintfFuncName is the name this function is registered as.
// FIXME: should this be named sprintf instead?
PrintfFuncName = "printf"
// PrintfAllowNonStaticFormat allows us to use printf when the zeroth
// argument (the format string) is not known statically at compile time.
// The downside of this is that if it changes while we are running, it
// could change from "hello %s" to "hello %d" or "%s %d...". If this
// happens we can generate ugly format strings, instead of preventing it
// from even running at all. The behaviour if this happens is determined
// by PrintfAllowFormatError.
//
// NOTE: It's useful to allow dynamic strings if we were generating
// custom log messages (for example) where the format comes from a
// database lookup or similar. Of course if we knew that such a lookup
// could be done quickly and statically (maybe it's a read from a local
// key-value config file that's part of our deploy) then maybe we can do
// it before unification speculatively.
PrintfAllowNonStaticFormat = true
// PrintfAllowFormatError will cause the function to shutdown if it has
// an invalid format string. Otherwise this will cause the output of the
// function to return a garbled message. This is similar to golang's
// format errors, eg: https://pkg.go.dev/fmt#hdr-Format_errors
PrintfAllowFormatError = true
printfArgNameFormat = "format" // name of the first arg
)
func init() {
funcs.ModuleRegister(ModuleName, PrintfFuncName, func() interfaces.Func { return &PrintfFunc{} })
}
var _ interfaces.InferableFunc = &PrintfFunc{} // ensure it meets this expectation
// PrintfFunc is a static polymorphic function that compiles a format string and
// returns the output as a string. It bases its output on the values passed in
// to it. It examines the type of the arguments at compile time and then
// determines the static function signature by parsing the format string and
// using that to determine the final function signature. One consequence of this
// is that the format string must be a static string which is known at compile
// time. This is reasonable, because if it was a reactive, changing string, then
// we could expect the type signature to change, which is not allowed in our
// statically typed language.
type PrintfFunc struct {
Type *types.Type // final full type of our function
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *PrintfFunc) String() string {
if obj.Type != nil {
return fmt.Sprintf("%s: %s", PrintfFuncName, obj.Type)
}
return PrintfFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *PrintfFunc) ArgGen(index int) (string, error) {
if index == 0 {
return printfArgNameFormat, nil
}
// TODO: if index is big enough that it would return the string in
// `printfArgNameFormat` then we should return an error! (Nearly impossible.)
return util.NumToAlpha(index - 1), nil
}
// FuncInfer takes partial type and value information from the call site of this
// function so that it can build an appropriate type signature for it. The type
// signature may include unification variables.
func (obj *PrintfFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) {
// func(format str, args... variant) string
if len(partialValues) < 1 {
return nil, nil, fmt.Errorf("must have at least one arg")
}
if len(partialType.Map) < 1 {
// programming error?
return nil, nil, fmt.Errorf("must have at least one arg")
}
if typ := partialType.Map[partialType.Ord[0]]; typ != nil && typ.Cmp(types.TypeStr) != nil && !typ.HasUni() {
return nil, nil, fmt.Errorf("format string was a %s", typ)
}
getType := func(i int) *types.Type { // get Nth type, doesn't bound check
if partialValues[i] != nil {
// We don't check that this is consistent with
// partialType, because that's a compiler job.
return partialValues[i].Type() // got it!
}
if partialType == nil || partialType.Map == nil {
return nil // no more information
}
return partialType.Map[partialType.Ord[i]]
}
getFormat := func() *string {
if partialValues[0] == nil {
return nil // no more information
}
typ := partialValues[0].Type()
if typ == nil || typ.Cmp(types.TypeStr) != nil {
return nil // no more information
}
formatString := partialValues[0].Str()
return &formatString
}
typList := make([]*types.Type, len(partialValues)) // number of args at call site
for i := range partialValues { // populate initial expected types
typList[i] = getType(i) // nil if missing
}
// Do we have type information from the format string? (If it exists!)
if format := getFormat(); format != nil {
// formatList doesn't contain zeroth arg in our typList!
formatList, err := parseFormatToTypeList(*format)
if err != nil {
return nil, nil, errwrap.Wrapf(err, "could not parse format string")
}
for i, x := range typList {
if i == 0 { // format string
continue
}
if x == nil { // nothing to check against
typList[i] = formatList[i-1] // use this!
continue
}
// NOTE: Is it okay to allow unification variables here?
//if x.HasUni() {
// // programming error (did the compiler change?)
// return nil, nil, fmt.Errorf("programming error at arg index %d", i)
//}
if err := unificationUtil.UnifyCmp(x, formatList[i-1]); err != nil {
return nil, nil, errwrap.Wrapf(err, "inconsistent type at arg index %d", i)
}
// Less general version of the above...
//if err := x.Cmp(formatList[i-1]); err != nil {
// return nil, nil, errwrap.Wrapf(err, "inconsistent type at arg index %d", i)
//}
}
} else if !PrintfAllowNonStaticFormat {
return nil, nil, fmt.Errorf("format string is not known statically")
}
// Check the format string is consistent with what we've found earlier!
if i := 0; typList[i] != nil && typList[i].Cmp(types.TypeStr) != nil && !typList[i].HasUni() {
return nil, nil, fmt.Errorf("inconsistent type at arg index %d (format string)", i)
}
typList[0] = types.TypeStr // format string (zeroth arg)
mapped := map[string]*types.Type{}
ordered := []string{}
for i, x := range typList {
argName, err := obj.ArgGen(i)
if err != nil {
return nil, nil, err
}
//if x.HasVariant() {
// x = x.VariantToUni() // converts %[]v style things
//}
if x == nil || x == types.TypeVariant { // a %v or something unknown
x = &types.Type{
Kind: types.KindUnification,
Uni: types.NewElem(), // unification variable, eg: ?1
}
}
mapped[argName] = x
ordered = append(ordered, argName)
}
typ := &types.Type{ // this full function
Kind: types.KindFunc,
Map: mapped,
Ord: ordered,
Out: types.TypeStr,
}
return typ, []*interfaces.UnificationInvariant{}, nil
}
// Build takes the now known function signature and stores it so that this
// function can appear to be static. That type is used to build our function
// statically.
func (obj *PrintfFunc) Build(typ *types.Type) (*types.Type, error) {
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) < 1 {
return nil, fmt.Errorf("the printf function needs at least one arg")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Out.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("return type of function must be an str")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
t0, exists := typ.Map[typ.Ord[0]]
if !exists || t0 == nil {
return nil, fmt.Errorf("first arg must be specified")
}
if t0.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("first arg for printf must be an str")
}
//newTyp := typ.Copy()
newTyp := &types.Type{
Kind: typ.Kind, // copy
Map: make(map[string]*types.Type), // new
Ord: []string{}, // new
Out: typ.Out, // copy
}
for i, x := range typ.Ord { // remap arg names
argName, err := obj.ArgGen(i)
if err != nil {
return nil, err
}
newTyp.Map[argName] = typ.Map[x]
newTyp.Ord = append(newTyp.Ord, argName)
}
obj.Type = newTyp // function type is now known!
return obj.Type, nil
}
// Validate makes sure we've built our struct properly. It is usually unused for
// normal functions that users can use directly.
func (obj *PrintfFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
return nil
}
// Info returns some static info about itself.
func (obj *PrintfFunc) Info() *interfaces.Info {
// Since this function implements FuncInfer we want sig to return nil to
// avoid an accidental return of unification variables when we should be
// getting them from FuncInfer, and not from here. (During unification!)
return &interfaces.Info{
Pure: true,
Memo: true,
Fast: true,
Spec: true,
Sig: obj.Type,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *PrintfFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *PrintfFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
args, err := interfaces.StructToCallableArgs(input) // []types.Value, error)
if err != nil {
return err
}
result, err := obj.Call(ctx, args)
if err != nil {
return err
}
// if the result is still the same, skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
// pass
case <-ctx.Done():
return nil
}
}
}
// Copy is implemented so that the obj.Type value is not lost if we copy this
// function.
func (obj *PrintfFunc) Copy() interfaces.Func {
return &PrintfFunc{
Type: obj.Type, // don't copy because we use this after unification
init: obj.init, // likely gets overwritten anyways
}
}
// Call this function with the input args and return the value if it is possible
// to do so at this time.
func (obj *PrintfFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) {
if len(args) < 1 {
return nil, fmt.Errorf("not enough args")
}
format := args[0].Str()
values := []types.Value{}
for i, x := range args {
if i == 0 { // skip format arg
continue
}
values = append(values, x)
}
result, err := compileFormatToString(format, values)
if err != nil {
return nil, err // no errwrap needed b/c helper func
}
return &types.StrValue{
V: result,
}, nil
}
// valueToString prints our values how we expect for printf.
// FIXME: if this turns out to be useful, add it to the types package.
func valueToString(value types.Value) string {
switch x := value.Type().Kind; x {
// FIXME: floats don't print nicely: https://github.com/golang/go/issues/46118
case types.KindFloat:
// TODO: use formatting flags ?
// FIXME: Our String() method in FloatValue doesn't print nicely
return value.String()
case types.KindList:
fallthrough
case types.KindMap:
fallthrough
case types.KindStruct:
// XXX: Attempting to run value.Value() on a struct, which will
// surely have a lowercase (unexported) name will panic. This
// will also happen on any container types like list or map that
// may have a struct inside. It's expected that we have
// lowercase field names since we're using mcl, but workaround
// this panic for now with this cheap representation.
return value.String()
}
// FIXME: this is just an "easy-out" implementation for now...
return fmt.Sprintf("%v", value.Value())
//switch x := value.Type().Kind; x {
//case types.KindBool:
// return value.String()
//case types.KindStr:
// return value.Str() // use this since otherwise it adds " & "
//case types.KindInt:
// return value.String()
//case types.KindFloat:
// // TODO: use formatting flags ?
// return value.String()
//}
//panic("unhandled type") // TODO: not fully implemented yet
}
// parseFormatToTypeList takes a format string and returns a list of types that
// it expects to use in the order found in the format string. This can also
// handle the %v special variant type in the format string.
// FIXME: add support for more types, and add tests!
func parseFormatToTypeList(format string) ([]*types.Type, error) {
typList := []*types.Type{}
inType := false
for i := 0; i < len(format); i++ {
// some normal char...
if !inType && format[i] != '%' {
continue
}
// in a type or we're a %
if format[i] == '%' {
if inType {
// it's a %%
inType = false
} else {
// start looking for type specification!
inType = true
}
continue
}
// we must be in a type
switch format[i] {
case 't':
typList = append(typList, types.TypeBool)
case 's':
typList = append(typList, types.TypeStr)
case 'd':
typList = append(typList, types.TypeInt)
// TODO: parse fancy formats like %0.2f and stuff
case 'f':
typList = append(typList, types.TypeFloat)
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
// special!
case 'v':
//typList = append(typList, types.TypeVariant) // old
typList = append(typList, types.NewType("?1")) // uni!
default:
return nil, fmt.Errorf("invalid format string at %d", i)
}
inType = false // done
}
return typList, nil
}
// compileFormatToString takes a format string and a list of values and returns
// the compiled/templated output. This can also handle the %v special variant
// type in the format string. Of course the corresponding value to those %v
// entries must have a static, fixed, precise type. If someone changes the
// format string during runtime, then that's their fault, and this could error.
// Depending on PrintfAllowFormatError, we should NOT error if we have a
// mismatch between the format string and the available args. Return similar to
// golang's EXTRA/MISSING, eg: https://pkg.go.dev/fmt#hdr-Format_errors
// TODO: implement better format errors support
// FIXME: add support for more types, and add tests!
func compileFormatToString(format string, values []types.Value) (string, error) {
output := ""
ix := 0
inType := false
for i := 0; i < len(format); i++ {
// some normal char...
if !inType && format[i] != '%' {
output += string(format[i])
continue
}
// in a type or we're a %
if format[i] == '%' {
if inType {
// it's a %%
output += string(format[i])
inType = false
} else {
// start looking for type specification!
inType = true
}
continue
}
// we must be in a type
var typ *types.Type
switch format[i] {
case 't':
typ = types.TypeBool
case 's':
typ = types.TypeStr
case 'd':
typ = types.TypeInt
// TODO: parse fancy formats like %0.2f and stuff
case 'f':
typ = types.TypeFloat
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
case 'v':
typ = types.TypeVariant
default:
// TODO: improve the output of this
if !PrintfAllowFormatError {
return fmt.Sprintf("<invalid format `%v` at %d>", format[i], i), nil
}
return "", fmt.Errorf("invalid format string at %d", i)
}
inType = false // done
if ix >= len(values) {
// TODO: improve the output of this
if !PrintfAllowFormatError {
return fmt.Sprintf("<invalid format length `%d` at %d>", ix, i), nil
}
return "", fmt.Errorf("more specifiers (%d) than values (%d)", ix+1, len(values))
}
// check the type (if not a variant) matches what we have...
if typ == types.TypeVariant {
if values[ix].Type() == nil {
return "", fmt.Errorf("unexpected nil type")
}
} else if err := typ.Cmp(values[ix].Type()); err != nil {
return "", errwrap.Wrapf(err, "unexpected type")
}
output += valueToString(values[ix])
ix++ // consume one value
}
return output, nil
}