This is an initial implementation of the mgmt language. It is a declarative (immutable) functional, reactive, domain specific programming language. It is intended to be a language that is: * safe * powerful * easy to reason about With these properties, we hope this language, and the mgmt engine will allow you to model the real-time systems that you'd like to automate. This also includes a number of other associated changes. Sorry for the large size of this patch.
286 lines
9.7 KiB
Go
286 lines
9.7 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2018+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package unification
|
|
|
|
import (
|
|
"fmt"
|
|
"strings"
|
|
|
|
"github.com/purpleidea/mgmt/lang/interfaces"
|
|
"github.com/purpleidea/mgmt/lang/types"
|
|
)
|
|
|
|
// Unify takes an AST expression tree and attempts to assign types to every node
|
|
// using the specified solver. The expression tree returns a list of invariants
|
|
// (or constraints) which must be met in order to find a unique value for the
|
|
// type of each expression. This list of invariants is passed into the solver,
|
|
// which hopefully finds a solution. If it cannot find a unique solution, then
|
|
// it will return an error. The invariants are available in different flavours
|
|
// which describe different constraint scenarios. The simplest expresses that a
|
|
// a particular node id (it's pointer) must be a certain type. More complicated
|
|
// invariants might express that two different node id's must have the same
|
|
// type. This function and logic was invented after the author could not find
|
|
// any proper literature or examples describing a well-known implementation of
|
|
// this process. Improvements and polite recommendations are welcome.
|
|
func Unify(ast interfaces.Stmt, solver func([]interfaces.Invariant) (*InvariantSolution, error)) error {
|
|
//log.Printf("unification: tree: %+v", ast) // debug
|
|
if ast == nil {
|
|
return fmt.Errorf("AST is nil")
|
|
}
|
|
|
|
invariants, err := ast.Unify()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
solved, err := solver(invariants)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// TODO: ideally we would know how many different expressions need their
|
|
// types set in the AST and then ensure we have this many unique
|
|
// solutions, and if not, then fail. This would ensure we don't have an
|
|
// AST that is only partially populated with the correct types.
|
|
|
|
//log.Printf("unification: found a solution!") // TODO: get a logf function passed in...
|
|
// solver has found a solution, apply it...
|
|
// we're modifying the AST, so code can't error now...
|
|
for _, x := range solved.Solutions {
|
|
//log.Printf("unification: solution: %p => %+v\t(%+v)", x.Expr, x.Type, x.Expr.String()) // debug
|
|
// apply this to each AST node
|
|
if err := x.Expr.SetType(x.Type); err != nil {
|
|
// programming error!
|
|
panic(fmt.Sprintf("error setting type: %+v, error: %+v", x.Expr, err))
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// EqualsInvariant is an invariant that symbolizes that the expression has a
|
|
// known type.
|
|
// TODO: is there a better name than EqualsInvariant
|
|
type EqualsInvariant struct {
|
|
Expr interfaces.Expr
|
|
Type *types.Type
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualsInvariant) String() string {
|
|
return fmt.Sprintf("%p == %s", obj.Expr, obj.Type)
|
|
}
|
|
|
|
// EqualityInvariant is an invariant that symbolizes that the two expressions
|
|
// must have equivalent types.
|
|
// TODO: is there a better name than EqualityInvariant
|
|
type EqualityInvariant struct {
|
|
Expr1 interfaces.Expr
|
|
Expr2 interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityInvariant) String() string {
|
|
return fmt.Sprintf("%p == %p", obj.Expr1, obj.Expr2)
|
|
}
|
|
|
|
// EqualityInvariantList is an invariant that symbolizes that all the
|
|
// expressions listed must have equivalent types.
|
|
type EqualityInvariantList struct {
|
|
Exprs []interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityInvariantList) String() string {
|
|
var a []string
|
|
for _, x := range obj.Exprs {
|
|
a = append(a, fmt.Sprintf("%p", x))
|
|
}
|
|
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
|
}
|
|
|
|
// EqualityWrapListInvariant expresses that a list in Expr1 must have elements
|
|
// that have the same type as the expression in Expr2Val.
|
|
type EqualityWrapListInvariant struct {
|
|
Expr1 interfaces.Expr
|
|
Expr2Val interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapListInvariant) String() string {
|
|
return fmt.Sprintf("%p == [%p]", obj.Expr1, obj.Expr2Val)
|
|
}
|
|
|
|
// EqualityWrapMapInvariant expresses that a map in Expr1 must have keys that
|
|
// match the type of the expression in Expr2Key and values that match the type
|
|
// of the expression in Expr2Val.
|
|
type EqualityWrapMapInvariant struct {
|
|
Expr1 interfaces.Expr
|
|
Expr2Key interfaces.Expr
|
|
Expr2Val interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapMapInvariant) String() string {
|
|
return fmt.Sprintf("%p == {%p: %p}", obj.Expr1, obj.Expr2Key, obj.Expr2Val)
|
|
}
|
|
|
|
// EqualityWrapStructInvariant expresses that a struct in Expr1 must have fields
|
|
// that match the type of the expressions listed in Expr2Map.
|
|
type EqualityWrapStructInvariant struct {
|
|
Expr1 interfaces.Expr
|
|
Expr2Map map[string]interfaces.Expr
|
|
Expr2Ord []string
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapStructInvariant) String() string {
|
|
var s = make([]string, len(obj.Expr2Ord))
|
|
for i, k := range obj.Expr2Ord {
|
|
t, ok := obj.Expr2Map[k]
|
|
if !ok {
|
|
panic("malformed struct order")
|
|
}
|
|
if t == nil {
|
|
panic("malformed struct field")
|
|
}
|
|
s[i] = fmt.Sprintf("%s %p", k, t)
|
|
}
|
|
return fmt.Sprintf("%p == struct{%s}", obj.Expr1, strings.Join(s, "; "))
|
|
}
|
|
|
|
// EqualityWrapFuncInvariant expresses that a func in Expr1 must have args that
|
|
// match the type of the expressions listed in Expr2Map and a return value that
|
|
// matches the type of the expression in Expr2Out.
|
|
// TODO: should this be named EqualityWrapCallInvariant or not?
|
|
type EqualityWrapFuncInvariant struct {
|
|
Expr1 interfaces.Expr
|
|
Expr2Map map[string]interfaces.Expr
|
|
Expr2Ord []string
|
|
Expr2Out interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *EqualityWrapFuncInvariant) String() string {
|
|
var s = make([]string, len(obj.Expr2Ord))
|
|
for i, k := range obj.Expr2Ord {
|
|
t, ok := obj.Expr2Map[k]
|
|
if !ok {
|
|
panic("malformed func order")
|
|
}
|
|
if t == nil {
|
|
panic("malformed func field")
|
|
}
|
|
s[i] = fmt.Sprintf("%s %p", k, t)
|
|
}
|
|
return fmt.Sprintf("%p == func{%s} %p", obj.Expr1, strings.Join(s, "; "), obj.Expr2Out)
|
|
}
|
|
|
|
// ConjunctionInvariant represents a list of invariants which must all be true
|
|
// together. In other words, it's a grouping construct for a set of invariants.
|
|
type ConjunctionInvariant struct {
|
|
Invariants []interfaces.Invariant
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *ConjunctionInvariant) String() string {
|
|
var a []string
|
|
for _, x := range obj.Invariants {
|
|
s := x.String()
|
|
a = append(a, s)
|
|
}
|
|
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
|
}
|
|
|
|
// ExclusiveInvariant represents a list of invariants where one and *only* one
|
|
// should hold true. To combine multiple invariants in one of the list elements,
|
|
// you can group multiple invariants together using a ConjunctionInvariant. Do
|
|
// note that the solver might not verify that only one of the invariants in the
|
|
// list holds true, as it might choose to be lazy and pick the first solution
|
|
// found.
|
|
type ExclusiveInvariant struct {
|
|
Invariants []interfaces.Invariant
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *ExclusiveInvariant) String() string {
|
|
var a []string
|
|
for _, x := range obj.Invariants {
|
|
s := x.String()
|
|
a = append(a, s)
|
|
}
|
|
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
|
}
|
|
|
|
// exclusivesProduct returns a list of different products produced from the
|
|
// combinatorial product of the list of exclusives. Each ExclusiveInvariant
|
|
// must contain between one and more Invariants. This takes every combination of
|
|
// Invariants (choosing one from each ExclusiveInvariant) and returns that list.
|
|
// In other words, if you have three exclusives, with invariants named (A1, B1),
|
|
// (A2), and (A3, B3, C3) you'll get: (A1, A2, A3), (A1, A2, B3), (A1, A2, C3),
|
|
// (B1, A2, A3), (B1, A2, B3), (B1, A2, C3) as results for this function call.
|
|
func exclusivesProduct(exclusives []*ExclusiveInvariant) [][]interfaces.Invariant {
|
|
if len(exclusives) == 0 {
|
|
return nil
|
|
}
|
|
|
|
length := func(i int) int { return len(exclusives[i].Invariants) }
|
|
|
|
// NextIx sets ix to the lexicographically next value,
|
|
// such that for each i > 0, 0 <= ix[i] < length(i).
|
|
NextIx := func(ix []int) {
|
|
for i := len(ix) - 1; i >= 0; i-- {
|
|
ix[i]++
|
|
if i == 0 || ix[i] < length(i) {
|
|
return
|
|
}
|
|
ix[i] = 0
|
|
}
|
|
}
|
|
|
|
results := [][]interfaces.Invariant{}
|
|
|
|
for ix := make([]int, len(exclusives)); ix[0] < length(0); NextIx(ix) {
|
|
x := []interfaces.Invariant{}
|
|
for j, k := range ix {
|
|
x = append(x, exclusives[j].Invariants[k])
|
|
}
|
|
results = append(results, x)
|
|
}
|
|
|
|
return results
|
|
}
|
|
|
|
// AnyInvariant is an invariant that symbolizes that the expression can be any
|
|
// type. It is sometimes used to ensure that an expr actually gets a solution
|
|
// type so that it is not left unreferenced, and as a result, unsolved.
|
|
// TODO: is there a better name than AnyInvariant
|
|
type AnyInvariant struct {
|
|
Expr interfaces.Expr
|
|
}
|
|
|
|
// String returns a representation of this invariant.
|
|
func (obj *AnyInvariant) String() string {
|
|
return fmt.Sprintf("%p == *", obj.Expr)
|
|
}
|
|
|
|
// InvariantSolution lists a trivial set of EqualsInvariant mappings so that you
|
|
// can populate your AST with SetType calls in a simple loop.
|
|
type InvariantSolution struct {
|
|
Solutions []*EqualsInvariant // list of trivial solutions for each node
|
|
}
|