Files
mgmt/lang/funcs/simplepoly/simplepoly.go
James Shubin 046b21b907 lang: Refactor most functions to support modules
This is a giant refactor to move functions into a hierarchial module
layout. While this isn't entirely implemented yet, it should work
correctly once all the import bits have landed. What's broken at the
moment is the template function, which currently doesn't understand the
period separator.
2018-12-20 21:21:30 -05:00

294 lines
8.9 KiB
Go

// Mgmt
// Copyright (C) 2013-2018+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package simplepoly
import (
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
errwrap "github.com/pkg/errors"
)
// RegisteredFuncs maps a function name to the corresponding static, pure funcs.
var RegisteredFuncs = make(map[string][]*types.FuncValue) // must initialize
// Register registers a simple, static, pure, polymorphic function. It is easier
// to use than the raw function API, but also limits you to small, finite
// numbers of different polymorphic type signatures per function name. You can
// also register functions which return types containing variants, if you want
// automatic matching based on partial types as well. Some complex patterns are
// not possible with this API. Implementing a function like `printf` would not
// be possible. Implementing a function which counts the number of elements in a
// list would be.
func Register(name string, fns []*types.FuncValue) {
if _, exists := RegisteredFuncs[name]; exists {
panic(fmt.Sprintf("a simple polyfunc named %s is already registered", name))
}
// check for uniqueness in type signatures
typs := []*types.Type{}
for _, f := range fns {
if f.T == nil {
panic(fmt.Sprintf("polyfunc %s contains a nil type signature", name))
}
typs = append(typs, f.T)
}
if err := hasDuplicateTypes(typs); err != nil {
panic(fmt.Sprintf("polyfunc %s has a duplicate implementation: %+v", name, err))
}
RegisteredFuncs[name] = fns // store a copy for ourselves
// register a copy in the main function database
funcs.Register(name, func() interfaces.Func { return &simplePolyFunc{Fns: fns} })
}
// ModuleRegister is exactly like Register, except that it registers within a
// named module. This is a helper function.
func ModuleRegister(module, name string, fns []*types.FuncValue) {
Register(module+funcs.ModuleSep+name, fns)
}
// simplePolyFunc is a scaffolding function struct which fulfills the
// boiler-plate for the function API, but that can run a very simple, static,
// pure, polymorphic function.
type simplePolyFunc struct {
Fns []*types.FuncValue // list of possible functions
fn *types.FuncValue // the concrete version of our chosen function
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
closeChan chan struct{}
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *simplePolyFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
if len(obj.Fns) == 0 {
return nil, fmt.Errorf("no matching signatures for simple polyfunc")
}
// filter out anything that's incompatible with the partialType
typs := []*types.Type{}
for _, f := range obj.Fns {
// TODO: if status is "both", should we skip as too difficult?
_, err := f.T.ComplexCmp(partialType)
// XXX: can an f.T with a variant compare with a partial ?
if err != nil {
continue
}
typs = append(typs, f.T)
}
return typs, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used.
func (obj *simplePolyFunc) Build(typ *types.Type) error {
// typ is the KindFunc signature we're trying to build...
if typ.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
// find typ in obj.Fns
for ix, f := range obj.Fns {
if f.T.HasVariant() {
continue // match these if no direct matches exist
}
// FIXME: can we replace this by the complex matcher down below?
if f.T.Cmp(typ) == nil {
obj.buildFunction(typ, ix) // found match at this index
return nil
}
}
// match concrete type against our list that might contain a variant
var found bool
for ix, f := range obj.Fns {
_, err := typ.ComplexCmp(f.T)
if err != nil {
continue
}
if found { // already found one...
// TODO: we *could* check that the previous duplicate is
// equivalent, but in this case, it is really a bug that
// the function author had by allowing ambiguity in this
return fmt.Errorf("duplicate match found for build type: %+v", typ)
}
found = true
obj.buildFunction(typ, ix) // found match at this index
}
// ensure there's only one match...
if found {
return nil // w00t!
}
return fmt.Errorf("unable to find a compatible function for type: %+v", typ)
}
// buildFunction builds our concrete static function, from the potentially
// abstract, possibly variant containing list of functions.
func (obj *simplePolyFunc) buildFunction(typ *types.Type, ix int) {
obj.fn = obj.Fns[ix].Copy().(*types.FuncValue)
obj.fn.T = typ.Copy() // overwrites any contained "variant" type
}
// Validate makes sure we've built our struct properly. It is usually unused for
// normal functions that users can use directly.
func (obj *simplePolyFunc) Validate() error {
if len(obj.Fns) == 0 {
return fmt.Errorf("missing list of functions")
}
// check for uniqueness in type signatures
typs := []*types.Type{}
for _, f := range obj.Fns {
if f.T == nil {
return fmt.Errorf("nil type signature found")
}
typs = append(typs, f.T)
}
if err := hasDuplicateTypes(typs); err != nil {
return errwrap.Wrapf(err, "duplicate implementation found")
}
if obj.fn == nil { // build must be run first
return fmt.Errorf("a specific function has not been specified")
}
if obj.fn.T.Kind != types.KindFunc {
return fmt.Errorf("func must be a kind of func")
}
return nil
}
// Info returns some static info about itself.
func (obj *simplePolyFunc) Info() *interfaces.Info {
return &interfaces.Info{
Pure: true,
Memo: false, // TODO: should this be something we specify here?
Sig: obj.fn.Type(),
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *simplePolyFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.closeChan = make(chan struct{})
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *simplePolyFunc) Stream() error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
if len(obj.fn.Type().Ord) > 0 {
return nil // can't output any more
}
// no inputs were expected, pass through once
}
if ok {
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
}
values := []types.Value{}
for _, name := range obj.fn.Type().Ord {
x := input.Struct()[name]
values = append(values, x)
}
if obj.init.Debug {
obj.init.Logf("Calling function with: %+v", values)
}
result, err := obj.fn.Call(values) // (Value, error)
if err != nil {
if obj.init.Debug {
obj.init.Logf("Function returned error: %+v", err)
}
return errwrap.Wrapf(err, "simple poly function errored")
}
if obj.init.Debug {
obj.init.Logf("Function returned with: %+v", values)
}
if obj.result == result {
continue // result didn't change
}
obj.result = result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- obj.result: // send
if len(obj.fn.Type().Ord) == 0 {
return nil // no more values, we're a pure func
}
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *simplePolyFunc) Close() error {
close(obj.closeChan)
return nil
}
// hasDuplicateTypes returns an error if the list of types is not unique.
func hasDuplicateTypes(typs []*types.Type) error {
// FIXME: do this comparison in < O(n^2) ?
for i, ti := range typs {
for j, tj := range typs {
if i == j {
continue // don't compare to self
}
if ti.Cmp(tj) == nil {
return fmt.Errorf("duplicate type of %+v found", ti)
}
}
}
return nil
}