Files
mgmt/lang/funcs/core/schedule_func.go
James Shubin 96dccca475 lang: Add module imports and more
This enables imports in mcl code, and is one of last remaining blockers
to using mgmt. Now we can start writing standalone modules, and adding
standard library functions as needed. There's still lots to do, but this
was a big missing piece. It was much harder to get right than I had
expected, but I think it's solid!

This unfortunately large commit is the result of some wild hacking I've
been doing for the past little while. It's the result of a rebase that
broke many "wip" commits that tracked my private progress, into
something that's not gratuitously messy for our git logs. Since this was
a learning and discovery process for me, I've "erased" the confusing git
history that wouldn't have helped. I'm happy to discuss the dead-ends,
and a small portion of that code was even left in for possible future
use.

This patch includes:

* A change to the cli interface:
You now specify the front-end explicitly, instead of leaving it up to
the front-end to decide when to "activate". For example, instead of:

mgmt run --lang code.mcl

we now do:

mgmt run lang --lang code.mcl

We might rename the --lang flag in the future to avoid the awkward word
repetition. Suggestions welcome, but I'm considering "input". One
side-effect of this change, is that flags which are "engine" specific
now must be specified with "run" before the front-end name. Eg:

mgmt run --tmp-prefix lang --lang code.mcl

instead of putting --tmp-prefix at the end. We also changed the GAPI
slightly, but I've patched all code that used it. This also makes things
consistent with the "deploy" command.

* The deploys are more robust and let you deploy after a run
This has been vastly improved and let's mgmt really run as a smart
engine that can handle different workloads. If you don't want to deploy
when you've started with `run` or if one comes in, you can use the
--no-watch-deploy option to block new deploys.

* The import statement exists and works!
We now have a working `import` statement. Read the docs, and try it out.
I think it's quite elegant how it fits in with `SetScope`. Have a look.
As a result, we now have some built-in functions available in modules.
This also adds the metadata.yaml entry-point for all modules. Have a
look at the examples or the tests. The bulk of the patch is to support
this.

* Improved lang input parsing code:
I re-wrote the parsing that determined what ran when we passed different
things to --lang. Deciding between running an mcl file or raw code is
now handled in a more intelligent, and re-usable way. See the inputs.go
file if you want to have a look. One casualty is that you can't stream
code from stdin *directly* to the front-end, it's encapsulated into a
deploy first. You can still use stdin though! I doubt anyone will notice
this change.

* The scope was extended to include functions and classes:
Go forth and import lovely code. All these exist in scopes now, and can
be re-used!

* Function calls actually use the scope now. Glad I got this sorted out.

* There is import cycle detection for modules!
Yes, this is another dag. I think that's #4. I guess they're useful.

* A ton of tests and new test infra was added!
This should make it much easier to add new tests that run mcl code. Have
a look at TestAstFunc1 to see how to add more of these.

As usual, I'll try to keep these commits smaller in the future!
2018-12-21 06:22:12 -05:00

449 lines
14 KiB
Go

// Mgmt
// Copyright (C) 2013-2018+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// test with:
// time ./mgmt run --hostname h1 --ideal-cluster-size 1 --tmp-prefix --no-pgp lang --lang examples/lang/schedule0.mcl
// time ./mgmt run --hostname h2 --seeds http://127.0.0.1:2379 --client-urls http://127.0.0.1:2381 --server-urls http://127.0.0.1:2382 --tmp-prefix --no-pgp lang --lang examples/lang/schedule0.mcl
// time ./mgmt run --hostname h3 --seeds http://127.0.0.1:2379 --client-urls http://127.0.0.1:2383 --server-urls http://127.0.0.1:2384 --tmp-prefix --no-pgp lang --lang examples/lang/schedule0.mcl
// kill h2 (should see h1 and h3 pick [h1, h3] instead)
// restart h2 (should see [h1, h3] as before)
// kill h3 (should see h1 and h2 pick [h1, h2] instead)
// restart h3 (should see [h1, h2] as before)
// kill h3
// kill h2
// kill h1... all done!
package core // TODO: should this be in its own individual package?
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/etcd/scheduler" // TODO: is it okay to import this without abstraction?
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
errwrap "github.com/pkg/errors"
)
const (
// DefaultStrategy is the strategy to use if none has been specified.
DefaultStrategy = "rr"
)
func init() {
funcs.Register("schedule", func() interfaces.Func { return &SchedulePolyFunc{} }) // must register the func and name
}
// SchedulePolyFunc is special function which determines where code should run
// in the cluster.
type SchedulePolyFunc struct {
Type *types.Type // this is the type of value stored in our list
init *interfaces.Init
namespace string
scheduler *scheduler.Result
last types.Value
result types.Value // last calculated output
watchChan chan *schedulerResult
closeChan chan struct{}
}
// validOpts returns the available mapping of valid opts fields to types.
func (obj *SchedulePolyFunc) validOpts() map[string]*types.Type {
return map[string]*types.Type{
"strategy": types.TypeStr,
"max": types.TypeInt,
"reuse": types.TypeBool,
"ttl": types.TypeInt,
}
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *SchedulePolyFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// TODO: technically, we could generate all permutations of the struct!
//variant := []*types.Type{}
//t0 := types.NewType("func(namespace str) []str")
//variant = append(variant, t0)
//validOpts := obj.validOpts()
//for ? := ? range { // generate all permutations of the struct...
// t := types.NewType(fmt.Sprintf("func(namespace str, opts %s) []str", ?))
// variant = append(variant, t)
//}
//if partialType == nil {
// return variant, nil
//}
if partialType == nil {
return nil, fmt.Errorf("zero type information given")
}
var typ *types.Type
if tOut := partialType.Out; tOut != nil {
if err := tOut.Cmp(types.NewType("[]str")); err != nil {
return nil, errwrap.Wrapf(err, "return type must be a list of strings")
}
}
ord := partialType.Ord
if partialType.Map != nil {
if len(ord) == 0 {
return nil, fmt.Errorf("must have at least one arg in schedule func")
}
if tNamespace, exists := partialType.Map[ord[0]]; exists && tNamespace != nil {
if err := tNamespace.Cmp(types.TypeStr); err != nil {
return nil, errwrap.Wrapf(err, "first arg must be an str")
}
}
if len(ord) == 1 {
return []*types.Type{types.NewType("func(namespace str) []str")}, nil // done!
}
if len(ord) != 2 {
return nil, fmt.Errorf("must have either one or two args in schedule func")
}
if tOpts, exists := partialType.Map[ord[1]]; exists {
if tOpts == nil { // usually a `struct{}`
typFunc := types.NewType("func(namespace str, opts variant) []str")
return []*types.Type{typFunc}, nil // solved!
}
if tOpts.Kind != types.KindStruct {
return nil, fmt.Errorf("second arg must be of kind struct")
}
validOpts := obj.validOpts()
for _, name := range tOpts.Ord {
t := tOpts.Map[name]
value, exists := validOpts[name]
if !exists {
return nil, fmt.Errorf("unexpected opts field: `%s`", name)
}
if err := t.Cmp(value); err != nil {
return nil, errwrap.Wrapf(err, "expected different type for opts field: `%s`", name)
}
}
typ = tOpts // solved
}
}
if typ == nil {
return nil, fmt.Errorf("not enough type information")
}
typFunc := types.NewType(fmt.Sprintf("func(namespace str, opts %s) []str", typ.String()))
// TODO: type check that the partialValues are compatible
return []*types.Type{typFunc}, nil // solved!
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *SchedulePolyFunc) Build(typ *types.Type) error {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 1 && len(typ.Ord) != 2 {
return fmt.Errorf("the schedule function needs either one or two args")
}
if typ.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return fmt.Errorf("invalid input type")
}
if err := typ.Out.Cmp(types.NewType("[]str")); err != nil {
return errwrap.Wrapf(err, "return type must be a list of strings")
}
tNamespace, exists := typ.Map[typ.Ord[0]]
if !exists || tNamespace == nil {
return fmt.Errorf("first arg must be specified")
}
if len(typ.Ord) == 1 {
obj.Type = nil
return nil // done early, 2nd arg is absent!
}
tOpts, exists := typ.Map[typ.Ord[1]]
if !exists || tOpts == nil {
return fmt.Errorf("second argument was missing")
}
if tOpts.Kind != types.KindStruct {
return fmt.Errorf("second argument must be of kind struct")
}
validOpts := obj.validOpts()
for _, name := range tOpts.Ord {
t := tOpts.Map[name]
value, exists := validOpts[name]
if !exists {
return fmt.Errorf("unexpected opts field: `%s`", name)
}
if err := t.Cmp(value); err != nil {
return errwrap.Wrapf(err, "expected different type for opts field: `%s`", name)
}
}
obj.Type = tOpts // type of opts struct, even an empty: `struct{}`
return nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *SchedulePolyFunc) Validate() error {
// obj.Type can be nil if no 2nd arg is given, or a struct (even empty!)
if obj.Type != nil && obj.Type.Kind != types.KindStruct { // build must be run first
return fmt.Errorf("type must be nil or a struct")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *SchedulePolyFunc) Info() *interfaces.Info {
typ := types.NewType("func(namespace str) []str") // simplest form
if obj.Type != nil {
typ = types.NewType(fmt.Sprintf("func(namespace str, opts %s) []str", obj.Type.String()))
}
return &interfaces.Info{
Pure: false, // definitely false
Memo: false,
// output is list of hostnames chosen
Sig: typ, // func kind
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *SchedulePolyFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.watchChan = make(chan *schedulerResult)
obj.closeChan = make(chan struct{})
//obj.init.Debug = true // use this for local debugging
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *SchedulePolyFunc) Stream() error {
defer close(obj.init.Output) // the sender closes
for {
select {
// TODO: should this first chan be run as a priority channel to
// avoid some sort of glitch? is that even possible? can our
// hostname check with reality (below) fix that?
case input, ok := <-obj.init.Input:
if !ok {
obj.init.Input = nil // don't infinite loop back
continue // no more inputs, but don't return!
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
namespace := input.Struct()["namespace"].Str()
if namespace == "" {
return fmt.Errorf("can't use an empty namespace")
}
opts := make(map[string]types.Value) // empty "struct"
if val, exists := input.Struct()["opts"]; exists {
opts = val.Struct()
}
if obj.init.Debug {
obj.init.Logf("namespace: %s", namespace)
}
schedulerOpts := []scheduler.Option{}
// don't add bad or zero-value options
defaultStrategy := true
if val, exists := opts["strategy"]; exists {
if strategy := val.Str(); strategy != "" {
if obj.init.Debug {
obj.init.Logf("opts: strategy: %s", strategy)
}
defaultStrategy = false
schedulerOpts = append(schedulerOpts, scheduler.StrategyKind(strategy))
}
}
if defaultStrategy { // we always need to add one!
schedulerOpts = append(schedulerOpts, scheduler.StrategyKind(DefaultStrategy))
}
if val, exists := opts["max"]; exists {
// TODO: check for overflow
if max := int(val.Int()); max > 0 {
if obj.init.Debug {
obj.init.Logf("opts: max: %d", max)
}
schedulerOpts = append(schedulerOpts, scheduler.MaxCount(max))
}
}
if val, exists := opts["reuse"]; exists {
reuse := val.Bool()
if obj.init.Debug {
obj.init.Logf("opts: reuse: %t", reuse)
}
schedulerOpts = append(schedulerOpts, scheduler.ReuseLease(reuse))
}
if val, exists := opts["ttl"]; exists {
// TODO: check for overflow
if ttl := int(val.Int()); ttl > 0 {
if obj.init.Debug {
obj.init.Logf("opts: ttl: %d", ttl)
}
schedulerOpts = append(schedulerOpts, scheduler.SessionTTL(ttl))
}
}
// TODO: support changing the namespace over time...
// TODO: possibly removing our stored value there first!
if obj.namespace == "" {
obj.namespace = namespace // store it
if obj.init.Debug {
obj.init.Logf("starting scheduler...")
}
var err error
obj.scheduler, err = obj.init.World.Scheduler(obj.namespace, schedulerOpts...)
if err != nil {
return errwrap.Wrapf(err, "can't create scheduler")
}
// process the stream of scheduling output...
go func() {
defer close(obj.watchChan)
ctx, cancel := context.WithCancel(context.Background())
go func() {
defer cancel() // unblock Next()
defer obj.scheduler.Shutdown()
select {
case <-obj.closeChan:
return
}
}()
for {
hosts, err := obj.scheduler.Next(ctx)
select {
case obj.watchChan <- &schedulerResult{
hosts: hosts,
err: err,
}:
case <-obj.closeChan:
return
}
}
}()
} else if obj.namespace != namespace {
return fmt.Errorf("can't change namespace, previously: `%s`", obj.namespace)
}
continue // we send values on the watch chan, not here!
case schedulerResult, ok := <-obj.watchChan:
if !ok { // closed
// XXX: maybe etcd reconnected? (fix etcd implementation)
// XXX: if we close, perhaps the engine is
// switching etcd hosts and we should retry?
// maybe instead we should get an "etcd
// reconnect" signal, and the lang will restart?
return nil
}
if err := schedulerResult.err; err != nil {
if err == scheduler.ErrEndOfResults {
//return nil // TODO: we should probably fix the reconnect issue and use this here
return fmt.Errorf("scheduler shutdown, reconnect bug?") // XXX: fix etcd reconnects
}
return errwrap.Wrapf(err, "channel watch failed on `%s`", obj.namespace)
}
if obj.init.Debug {
obj.init.Logf("got hosts: %+v", schedulerResult.hosts)
}
var result types.Value
l := types.NewList(obj.Info().Sig.Out)
for _, val := range schedulerResult.hosts {
if err := l.Add(&types.StrValue{V: val}); err != nil {
return errwrap.Wrapf(err, "list could not add val: `%s`", val)
}
}
result = l // set list as result
if obj.init.Debug {
obj.init.Logf("result: %+v", result)
}
// if the result is still the same, skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- obj.result: // send
// pass
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *SchedulePolyFunc) Close() error {
close(obj.closeChan)
return nil
}
// schedulerResult combines our internal events into a single message packet.
type schedulerResult struct {
hosts []string
err error
}