Files
mgmt/lang/core/lookup.go
James Shubin 37bb67dffd lang: Improve graph shape with speculative execution
Most of the time, we don't need to have a dynamic call sub graph, since
the actual function call could be represented statically as it
originally was before lambda functions were implemented. Simplifying the
graph shape has important performance benefits in terms of both keep the
graph smaller (memory, etc) and in avoiding the need to run transactions
at runtime (speed) to reshape the graph.

Co-authored-by: Samuel Gélineau <gelisam@gmail.com>
2025-04-27 22:14:51 -04:00

271 lines
8.7 KiB
Go

// Mgmt
// Copyright (C) James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package core
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
)
const (
// LookupFuncName is the name this function is registered as.
// This starts with an underscore so that it cannot be used from the
// lexer.
LookupFuncName = funcs.LookupFuncName
// arg names...
lookupArgNameListOrMap = "listormap"
lookupArgNameIndexOrKey = "indexorkey"
)
func init() {
funcs.Register(LookupFuncName, func() interfaces.Func { return &LookupFunc{} }) // must register the func and name
}
var _ interfaces.InferableFunc = &LookupFunc{} // ensure it meets this expectation
// LookupFunc is a list index or map key lookup function. It does both because
// the current syntax in the parser is identical, so it's convenient to mix the
// two together. This calls out to some of the code in the ListLookupFunc and
// MapLookupFunc implementations. If the index or key for this input doesn't
// exist, then it will return the zero value for that type.
// TODO: Eventually we will deprecate this function when the function engine can
// support passing a value for erroring functions. (Bad index could be an err!)
type LookupFunc struct {
Type *types.Type // Kind == List OR Map, that is used as the list/map we lookup in
//init *interfaces.Init
fn interfaces.BuildableFunc // handle to ListLookupFunc or MapLookupFunc
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *LookupFunc) String() string {
return LookupFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *LookupFunc) ArgGen(index int) (string, error) {
seq := []string{lookupArgNameListOrMap, lookupArgNameIndexOrKey}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// FuncInfer takes partial type and value information from the call site of this
// function so that it can build an appropriate type signature for it. The type
// signature may include unification variables.
func (obj *LookupFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) {
// func(?1, ?2) ?3
//
// UNLESS we can be more precise, in which case it's
//
// func(list []?1, index int) ?1
// OR
// func(map map{?1: ?2}, key ?1) ?2
// FIXME: We'd instead love to do this during type unification with a
// callback or similar, but at least for now this handles some cases.
var sig *types.Type
listSig := types.NewType("func(list []?1, index int) ?1")
mapSig := types.NewType("func(map map{?1: ?2}, key ?1) ?2")
// If first arg is a list or map, then we know which sig to use.
if len(partialType.Ord) == 2 && partialType.Map[partialType.Ord[0]] != nil {
typ, exists := partialType.Map[partialType.Ord[0]]
// don't overwrite earlier determinations
if exists && typ.Kind == types.KindList && sig == nil {
sig = listSig
}
if exists && typ.Kind == types.KindMap && sig == nil {
sig = mapSig
}
}
// If second arg is not an int, then it must be a map lookup.
if len(partialType.Ord) == 2 && partialType.Map[partialType.Ord[1]] != nil {
typ, exists := partialType.Map[partialType.Ord[1]]
// don't overwrite earlier determinations
if exists && typ.Kind != types.KindInt && sig == nil {
sig = mapSig
}
}
// If second arg is not an int, then it must be a map lookup.
if len(partialValues) == 2 && partialValues[1] != nil {
typ := partialValues[1].Type()
// don't overwrite earlier determinations
if typ != nil && typ.Kind != types.KindInt && sig == nil {
sig = mapSig
}
}
// If we haven't found a precise sig, use the less specific type.
if sig == nil {
sig = types.NewType("func(?1, ?2) ?3")
}
return sig, []*interfaces.UnificationInvariant{}, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *LookupFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ == nil {
return nil, fmt.Errorf("nil type") // happens b/c of Copy()
}
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return nil, fmt.Errorf("the lookup function needs two args")
}
tListOrMap, exists := typ.Map[typ.Ord[0]]
if !exists || tListOrMap == nil {
return nil, fmt.Errorf("first arg must be specified")
}
if tListOrMap == nil {
return nil, fmt.Errorf("first arg must have a type")
}
name := ""
if tListOrMap.Kind == types.KindList {
name = ListLookupFuncName
}
if tListOrMap.Kind == types.KindMap {
name = MapLookupFuncName
}
if name == "" {
return nil, fmt.Errorf("we must lookup from either a list or a map")
}
f, err := funcs.Lookup(name)
if err != nil {
// programming error
return nil, err
}
if _, ok := f.(interfaces.CallableFunc); !ok {
// programming error
return nil, fmt.Errorf("not a CallableFunc")
}
bf, ok := f.(interfaces.BuildableFunc)
if !ok {
// programming error
return nil, fmt.Errorf("not a BuildableFunc")
}
obj.fn = bf
return obj.fn.Build(typ)
}
// Copy is implemented so that the type value is not lost if we copy this
// function.
func (obj *LookupFunc) Copy() interfaces.Func {
fn := &LookupFunc{
Type: obj.Type, // don't copy because we use this after unification
//init: obj.init, // likely gets overwritten anyways
}
if _, err := fn.Build(obj.Type); err != nil {
// ignore, since we just didn't set the type
}
return fn
}
// Validate tells us if the input struct takes a valid form.
func (obj *LookupFunc) Validate() error {
if obj.fn == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
return obj.fn.Validate()
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *LookupFunc) Info() *interfaces.Info {
// func(list []?1, index int) ?1
// OR
// func(map map{?1: ?2}, key ?1) ?2
if obj.fn == nil {
return &interfaces.Info{
Pure: true,
Memo: true,
Fast: true,
Spec: true,
Sig: types.NewType("func(?1, ?2) ?3"), // func kind
Err: obj.Validate(),
}
}
return obj.fn.Info()
}
// Init runs some startup code for this function.
func (obj *LookupFunc) Init(init *interfaces.Init) error {
if obj.fn == nil {
return fmt.Errorf("function not built correctly")
}
//obj.init = init
return obj.fn.Init(init)
}
// Stream returns the changing values that this func has over time.
func (obj *LookupFunc) Stream(ctx context.Context) error {
if obj.fn == nil {
return fmt.Errorf("function not built correctly")
}
return obj.fn.Stream(ctx)
}
// Call returns the result of this function.
func (obj *LookupFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) {
if obj.fn == nil {
return nil, funcs.ErrCantSpeculate
}
cf, ok := obj.fn.(interfaces.CallableFunc)
if !ok {
// programming error
return nil, fmt.Errorf("not a CallableFunc")
}
return cf.Call(ctx, args)
}