Files
mgmt/lang/funcs/map_lookup_default_func.go
2024-03-05 01:05:50 -05:00

619 lines
19 KiB
Go

// Mgmt
// Copyright (C) 2013-2024+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package funcs
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// MapLookupDefaultFuncName is the name this function is registered as.
MapLookupDefaultFuncName = "map_lookup_default"
// arg names...
mapLookupDefaultArgNameMap = "map"
mapLookupDefaultArgNameKey = "key"
mapLookupDefaultArgNameDef = "default"
)
func init() {
Register(MapLookupDefaultFuncName, func() interfaces.Func { return &MapLookupDefaultFunc{} }) // must register the func and name
}
var _ interfaces.PolyFunc = &MapLookupDefaultFunc{} // ensure it meets this expectation
// MapLookupDefaultFunc is a key map lookup function. If you provide a missing
// key, then it will return the default value you specified for this function.
type MapLookupDefaultFunc struct {
Type *types.Type // Kind == Map, that is used as the map we lookup
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *MapLookupDefaultFunc) String() string {
return MapLookupDefaultFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *MapLookupDefaultFunc) ArgGen(index int) (string, error) {
seq := []string{mapLookupDefaultArgNameMap, mapLookupDefaultArgNameKey, mapLookupDefaultArgNameDef}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *MapLookupDefaultFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(map T1, key T2, default T3) T3
// (map: T2 => T3)
mapName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
keyName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
defaultName, err := obj.ArgGen(2)
if err != nil {
return nil, err
}
dummyMap := &interfaces.ExprAny{} // corresponds to the map type
dummyKey := &interfaces.ExprAny{} // corresponds to the key type
dummyDefault := &interfaces.ExprAny{} // corresponds to the default type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
// default type and out are the same
invar = &interfaces.EqualityInvariant{
Expr1: dummyDefault,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// relationship between T1, T2 and T3
invar = &interfaces.EqualityWrapMapInvariant{
Expr1: dummyMap,
Expr2Key: dummyKey,
Expr2Val: dummyDefault,
}
invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{mapName, keyName, defaultName}
mapped[mapName] = dummyMap
mapped[keyName] = dummyKey
mapped[defaultName] = dummyDefault
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 3 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyMap,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyKey,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[2],
Expr2: dummyDefault,
}
invariants = append(invariants, invar)
// If we figure out all of these three types, we'll
// know the full type...
var t1 *types.Type // map type
var t2 *types.Type // map key type
var t3 *types.Type // map val type
// validateArg0 checks: map T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
// we happen to have a map!
if k := typ.Kind; k != types.KindMap {
return fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
if typ.Key == nil || typ.Val == nil {
// programming error
return fmt.Errorf("map is missing type")
}
if err := typ.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
if err := typ.Key.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
if err := typ.Val.Cmp(t3); t3 != nil && err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
// learn!
t1 = typ
t2 = typ.Key
t3 = typ.Val
return nil
}
// validateArg1 checks: map key T2
validateArg1 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if err := typ.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
if t1 != nil {
if err := typ.Cmp(t1.Key); err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
}
if t3 != nil {
t := &types.Type{ // build t1
Kind: types.KindMap,
Key: typ, // t2
Val: t3,
}
if err := t.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
t1 = t // learn!
}
// learn!
t2 = typ
return nil
}
// validateArg2 checks: map val T3
validateArg2 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if err := typ.Cmp(t3); t3 != nil && err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
if t1 != nil {
if err := typ.Cmp(t1.Val); err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
}
if t2 != nil {
t := &types.Type{ // build t1
Kind: types.KindMap,
Key: t2,
Val: typ, // t3
}
if err := t.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
t1 = t // learn!
}
// learn!
t3 = typ
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t2 and t3 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first map arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t2 and t3 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first map arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known?
// this sets t2 (and sometimes t1) on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second key arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type
// this sets t2 (and sometimes t1) on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second key arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[2].Type(); err == nil { // is it known?
// this sets t3 (and sometimes t1) on success if it learned
if err := validateArg2(typ); err != nil {
return nil, errwrap.Wrapf(err, "third default arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[2]]; exists { // alternate way to lookup type
// this sets t3 (and sometimes t1) on success if it learned
if err := validateArg2(typ); err != nil {
return nil, errwrap.Wrapf(err, "third default arg type is inconsistent")
}
}
// XXX: if the types aren't know statically?
if t1 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyMap,
Type: t1,
}
invariants = append(invariants, invar)
}
if t2 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyKey,
Type: t2,
}
invariants = append(invariants, invar)
}
if t3 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyDefault,
Type: t3,
}
invariants = append(invariants, invar)
}
// XXX: if t{1..3} are missing, we could also return a
// new generator for later if we learn new information,
// but we'd have to be careful to not do it infinitely.
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Polymorphisms returns the list of possible function signatures available for
// this static polymorphic function. It relies on type and value hints to limit
// the number of returned possibilities.
func (obj *MapLookupDefaultFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
// TODO: return `variant` as arg for now -- maybe there's a better way?
variant := []*types.Type{types.NewType("func(map variant, key variant, default variant) variant")}
if partialType == nil {
return variant, nil
}
// what's the map type of the first argument?
typ := &types.Type{
Kind: types.KindMap,
//Key: ???,
//Val: ???,
}
ord := partialType.Ord
if partialType.Map != nil {
if len(ord) != 3 {
return nil, fmt.Errorf("must have exactly three args in maplookup func")
}
if tMap, exists := partialType.Map[ord[0]]; exists && tMap != nil {
if tMap.Kind != types.KindMap {
return nil, fmt.Errorf("first arg for maplookup must be a map")
}
typ.Key = tMap.Key
typ.Val = tMap.Val
}
if tKey, exists := partialType.Map[ord[1]]; exists && tKey != nil {
if typ.Key != nil && typ.Key.Cmp(tKey) != nil {
return nil, fmt.Errorf("second arg for maplookup must match map's key type")
}
typ.Key = tKey
}
if tDef, exists := partialType.Map[ord[2]]; exists && tDef != nil {
if typ.Val != nil && typ.Val.Cmp(tDef) != nil {
return nil, fmt.Errorf("third arg for maplookup must match map's val type")
}
typ.Val = tDef
// add this for better error messages
if tOut := partialType.Out; tOut != nil {
if tDef.Cmp(tOut) != nil {
return nil, fmt.Errorf("third arg for maplookup must match return type")
}
}
}
if tOut := partialType.Out; tOut != nil {
if typ.Val != nil && typ.Val.Cmp(tOut) != nil {
return nil, fmt.Errorf("return type for maplookup must match map's val type")
}
typ.Val = tOut
}
}
// TODO: are we okay adding just the map val type and not the map key type?
//if tOut := partialType.Out; tOut != nil {
// if typ.Val != nil && typ.Val.Cmp(tOut) != nil {
// return nil, fmt.Errorf("return type for maplookup must match map's val type")
// }
// typ.Val = tOut
//}
typFunc := &types.Type{
Kind: types.KindFunc, // function type
Map: make(map[string]*types.Type),
Ord: []string{mapLookupDefaultArgNameMap, mapLookupDefaultArgNameKey, mapLookupDefaultArgNameDef},
Out: nil,
}
typFunc.Map[mapLookupDefaultArgNameMap] = typ
typFunc.Map[mapLookupDefaultArgNameKey] = typ.Key
typFunc.Map[mapLookupDefaultArgNameDef] = typ.Val
typFunc.Out = typ.Val
// TODO: don't include partial internal func map's for now, allow in future?
if typ.Key == nil || typ.Val == nil {
typFunc.Map = make(map[string]*types.Type) // erase partial
typFunc.Map[mapLookupDefaultArgNameMap] = types.TypeVariant
typFunc.Map[mapLookupDefaultArgNameKey] = types.TypeVariant
typFunc.Map[mapLookupDefaultArgNameDef] = types.TypeVariant
}
if typ.Val == nil {
typFunc.Out = types.TypeVariant
}
// just returning nothing for now, in case we can't detect a partial map
if typ.Key == nil || typ.Val == nil {
return []*types.Type{typFunc}, nil
}
// TODO: type check that the partialValues are compatible
return []*types.Type{typFunc}, nil // solved!
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *MapLookupDefaultFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 3 {
return nil, fmt.Errorf("the maplookup function needs exactly three args")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
tMap, exists := typ.Map[typ.Ord[0]]
if !exists || tMap == nil {
return nil, fmt.Errorf("first arg must be specified")
}
tKey, exists := typ.Map[typ.Ord[1]]
if !exists || tKey == nil {
return nil, fmt.Errorf("second arg must be specified")
}
tDef, exists := typ.Map[typ.Ord[2]]
if !exists || tDef == nil {
return nil, fmt.Errorf("third arg must be specified")
}
if err := tMap.Key.Cmp(tKey); err != nil {
return nil, errwrap.Wrapf(err, "key must match map key type")
}
if err := tMap.Val.Cmp(tDef); err != nil {
return nil, errwrap.Wrapf(err, "default must match map val type")
}
if err := tMap.Val.Cmp(typ.Out); err != nil {
return nil, errwrap.Wrapf(err, "return type must match map val type")
}
obj.Type = tMap // map type
return obj.sig(), nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *MapLookupDefaultFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindMap {
return fmt.Errorf("type must be a kind of map")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *MapLookupDefaultFunc) Info() *interfaces.Info {
var sig *types.Type
if obj.Type != nil { // don't panic if called speculatively
// TODO: can obj.Type.Key or obj.Type.Val be nil (a partial) ?
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: sig, // func kind
Err: obj.Validate(),
}
}
// helper
func (obj *MapLookupDefaultFunc) sig() *types.Type {
k := obj.Type.Key.String()
v := obj.Type.Val.String()
return types.NewType(fmt.Sprintf("func(%s %s, %s %s, %s %s) %s", mapLookupDefaultArgNameMap, obj.Type.String(), mapLookupDefaultArgNameKey, k, mapLookupDefaultArgNameDef, v, v))
}
// Init runs some startup code for this function.
func (obj *MapLookupDefaultFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *MapLookupDefaultFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
m := (input.Struct()[mapLookupDefaultArgNameMap]).(*types.MapValue)
key := input.Struct()[mapLookupDefaultArgNameKey]
def := input.Struct()[mapLookupDefaultArgNameDef]
var result types.Value
val, exists := m.Lookup(key)
if exists {
result = val
} else {
result = def
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-ctx.Done():
return nil
}
}
}