It's not entirely clear if this is required, but it's probably a good idea. We should consider making it a requirement of the BuildableFunc interface.
822 lines
25 KiB
Go
822 lines
25 KiB
Go
// Mgmt
|
|
// Copyright (C) James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
// Additional permission under GNU GPL version 3 section 7
|
|
//
|
|
// If you modify this program, or any covered work, by linking or combining it
|
|
// with embedded mcl code and modules (and that the embedded mcl code and
|
|
// modules which link with this program, contain a copy of their source code in
|
|
// the authoritative form) containing parts covered by the terms of any other
|
|
// license, the licensors of this program grant you additional permission to
|
|
// convey the resulting work. Furthermore, the licensors of this program grant
|
|
// the original author, James Shubin, additional permission to update this
|
|
// additional permission if he deems it necessary to achieve the goals of this
|
|
// additional permission.
|
|
|
|
// Package operators provides a helper library to load all of the built-in
|
|
// operators, which are actually just functions.
|
|
package operators // this is here, in case we allow others to register operators
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"math"
|
|
|
|
docsUtil "github.com/purpleidea/mgmt/docs/util"
|
|
"github.com/purpleidea/mgmt/lang/funcs"
|
|
"github.com/purpleidea/mgmt/lang/funcs/simple"
|
|
"github.com/purpleidea/mgmt/lang/interfaces"
|
|
"github.com/purpleidea/mgmt/lang/types"
|
|
"github.com/purpleidea/mgmt/util"
|
|
"github.com/purpleidea/mgmt/util/errwrap"
|
|
)
|
|
|
|
const (
|
|
// OperatorFuncName is the name this function is registered as. This
|
|
// starts with an underscore so that it cannot be used from the lexer.
|
|
OperatorFuncName = "_operator"
|
|
|
|
// operatorArgName is the edge and arg name used for the function's
|
|
// operator.
|
|
operatorArgName = "op" // something short and arbitrary
|
|
)
|
|
|
|
func init() {
|
|
RegisterOperator("+", &simple.Scaffold{
|
|
T: types.NewType("func(?1, ?1) ?1"),
|
|
C: simple.TypeMatch([]string{
|
|
"func(str, str) str", // concatenation
|
|
"func(int, int) int", // addition
|
|
"func(float, float) float", // floating-point addition
|
|
}),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
if l := len(input); l != 2 { // catch programming bugs
|
|
return nil, fmt.Errorf("invalid len %d", l)
|
|
}
|
|
switch k := input[0].Type().Kind; k {
|
|
case types.KindStr:
|
|
return &types.StrValue{
|
|
V: input[0].Str() + input[1].Str(),
|
|
}, nil
|
|
|
|
case types.KindInt:
|
|
// FIXME: check for overflow?
|
|
return &types.IntValue{
|
|
V: input[0].Int() + input[1].Int(),
|
|
}, nil
|
|
|
|
case types.KindFloat:
|
|
return &types.FloatValue{
|
|
V: input[0].Float() + input[1].Float(),
|
|
}, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unsupported kind: %+v", k)
|
|
}
|
|
},
|
|
})
|
|
|
|
RegisterOperator("-", &simple.Scaffold{
|
|
T: types.NewType("func(?1, ?1) ?1"),
|
|
C: simple.TypeMatch([]string{
|
|
"func(int, int) int", // subtraction
|
|
"func(float, float) float", // floating-point subtraction
|
|
}),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
switch k := input[0].Type().Kind; k {
|
|
case types.KindInt:
|
|
return &types.IntValue{
|
|
V: input[0].Int() - input[1].Int(),
|
|
}, nil
|
|
|
|
case types.KindFloat:
|
|
return &types.FloatValue{
|
|
V: input[0].Float() - input[1].Float(),
|
|
}, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unsupported kind: %+v", k)
|
|
}
|
|
},
|
|
})
|
|
|
|
RegisterOperator("*", &simple.Scaffold{
|
|
T: types.NewType("func(?1, ?1) ?1"),
|
|
C: simple.TypeMatch([]string{
|
|
"func(int, int) int", // multiplication
|
|
"func(float, float) float", // floating-point multiplication
|
|
}),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
switch k := input[0].Type().Kind; k {
|
|
case types.KindInt:
|
|
// FIXME: check for overflow?
|
|
return &types.IntValue{
|
|
V: input[0].Int() * input[1].Int(),
|
|
}, nil
|
|
|
|
case types.KindFloat:
|
|
return &types.FloatValue{
|
|
V: input[0].Float() * input[1].Float(),
|
|
}, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unsupported kind: %+v", k)
|
|
}
|
|
},
|
|
})
|
|
|
|
// don't add: `func(int, float) float` or: `func(float, int) float`
|
|
RegisterOperator("/", &simple.Scaffold{
|
|
T: types.NewType("func(?1, ?1) float"),
|
|
C: simple.TypeMatch([]string{
|
|
"func(int, int) float", // division
|
|
"func(float, float) float", // floating-point division
|
|
}),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
switch k := input[0].Type().Kind; k {
|
|
case types.KindInt:
|
|
divisor := input[1].Int()
|
|
if divisor == 0 {
|
|
return nil, fmt.Errorf("can't divide by zero")
|
|
}
|
|
return &types.FloatValue{
|
|
V: float64(input[0].Int()) / float64(divisor),
|
|
}, nil
|
|
|
|
case types.KindFloat:
|
|
divisor := input[1].Float()
|
|
if divisor == 0.0 {
|
|
return nil, fmt.Errorf("can't divide by zero")
|
|
}
|
|
return &types.FloatValue{
|
|
V: input[0].Float() / divisor,
|
|
}, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unsupported kind: %+v", k)
|
|
}
|
|
},
|
|
})
|
|
|
|
RegisterOperator("==", &simple.Scaffold{
|
|
T: types.NewType("func(?1, ?1) bool"),
|
|
C: func(typ *types.Type) error {
|
|
//if typ == nil { // happens within iter
|
|
// return fmt.Errorf("nil type")
|
|
//}
|
|
iterFn := func(typ *types.Type) error {
|
|
if typ == nil {
|
|
return fmt.Errorf("nil type")
|
|
}
|
|
if !types.IsComparableKind(typ.Kind) {
|
|
return fmt.Errorf("not comparable")
|
|
}
|
|
return nil
|
|
}
|
|
if err := types.Iter(typ, iterFn); err != nil {
|
|
return err
|
|
}
|
|
|
|
// At this point, we know we can cmp any contained type.
|
|
match := simple.TypeMatch([]string{
|
|
//"func(bool, bool) bool", // bool equality
|
|
//"func(str, str) bool", // string equality
|
|
//"func(int, int) bool", // int equality
|
|
//"func(float, float) bool", // floating-point equality
|
|
//"func([]?1, []?1) bool", // list equality
|
|
//"func(map{?1:?2}, map{?1:?2}) bool", // map equality
|
|
// struct in-equality (just skip the entire match function)
|
|
"func(?1, ?1) bool",
|
|
})
|
|
return match(typ)
|
|
},
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
k := input[0].Type().Kind
|
|
// Don't try and compare functions, this will panic!
|
|
if !types.IsComparableKind(k) {
|
|
return nil, fmt.Errorf("unsupported kind: %+v", k)
|
|
}
|
|
|
|
return &types.BoolValue{
|
|
V: input[0].Cmp(input[1]) == nil, // equality
|
|
}, nil
|
|
},
|
|
})
|
|
|
|
RegisterOperator("!=", &simple.Scaffold{
|
|
T: types.NewType("func(?1, ?1) bool"),
|
|
C: func(typ *types.Type) error {
|
|
//if typ == nil { // happens within iter
|
|
// return fmt.Errorf("nil type")
|
|
//}
|
|
iterFn := func(typ *types.Type) error {
|
|
if typ == nil {
|
|
return fmt.Errorf("nil type")
|
|
}
|
|
if !types.IsComparableKind(typ.Kind) {
|
|
return fmt.Errorf("not comparable")
|
|
}
|
|
return nil
|
|
}
|
|
if err := types.Iter(typ, iterFn); err != nil {
|
|
return err
|
|
}
|
|
|
|
// At this point, we know we can cmp any contained type.
|
|
match := simple.TypeMatch([]string{
|
|
//"func(bool, bool) bool", // bool in-equality
|
|
//"func(str, str) bool", // string in-equality
|
|
//"func(int, int) bool", // int in-equality
|
|
//"func(float, float) bool", // floating-point in-equality
|
|
//"func([]?1, []?1) bool", // list in-equality
|
|
//"func(map{?1:?2}, map{?1:?2}) bool", // map in-equality
|
|
// struct in-equality (just skip the entire match function)
|
|
"func(?1, ?1) bool",
|
|
})
|
|
return match(typ)
|
|
},
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
k := input[0].Type().Kind
|
|
// Don't try and compare functions, this will panic!
|
|
if !types.IsComparableKind(k) {
|
|
return nil, fmt.Errorf("unsupported kind: %+v", k)
|
|
}
|
|
|
|
return &types.BoolValue{
|
|
V: input[0].Cmp(input[1]) != nil, // in-equality
|
|
}, nil
|
|
},
|
|
})
|
|
|
|
RegisterOperator("<", &simple.Scaffold{
|
|
T: types.NewType("func(?1, ?1) bool"),
|
|
C: simple.TypeMatch([]string{
|
|
"func(int, int) bool", // less-than
|
|
"func(float, float) bool", // floating-point less-than
|
|
}),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
switch k := input[0].Type().Kind; k {
|
|
case types.KindInt:
|
|
return &types.BoolValue{
|
|
V: input[0].Int() < input[1].Int(),
|
|
}, nil
|
|
|
|
case types.KindFloat:
|
|
// TODO: should we do an epsilon check?
|
|
return &types.BoolValue{
|
|
V: input[0].Float() < input[1].Float(),
|
|
}, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unsupported kind: %+v", k)
|
|
}
|
|
},
|
|
})
|
|
|
|
RegisterOperator(">", &simple.Scaffold{
|
|
T: types.NewType("func(?1, ?1) bool"),
|
|
C: simple.TypeMatch([]string{
|
|
"func(int, int) bool", // greater-than
|
|
"func(float, float) bool", // floating-point greater-than
|
|
}),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
switch k := input[0].Type().Kind; k {
|
|
case types.KindInt:
|
|
return &types.BoolValue{
|
|
V: input[0].Int() > input[1].Int(),
|
|
}, nil
|
|
|
|
case types.KindFloat:
|
|
// TODO: should we do an epsilon check?
|
|
return &types.BoolValue{
|
|
V: input[0].Float() > input[1].Float(),
|
|
}, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unsupported kind: %+v", k)
|
|
}
|
|
},
|
|
})
|
|
|
|
RegisterOperator("<=", &simple.Scaffold{
|
|
T: types.NewType("func(?1, ?1) bool"),
|
|
C: simple.TypeMatch([]string{
|
|
"func(int, int) bool", // less-than-equal
|
|
"func(float, float) bool", // floating-point less-than-equal
|
|
}),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
switch k := input[0].Type().Kind; k {
|
|
case types.KindInt:
|
|
return &types.BoolValue{
|
|
V: input[0].Int() <= input[1].Int(),
|
|
}, nil
|
|
|
|
case types.KindFloat:
|
|
// TODO: should we do an epsilon check?
|
|
return &types.BoolValue{
|
|
V: input[0].Float() <= input[1].Float(),
|
|
}, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unsupported kind: %+v", k)
|
|
}
|
|
},
|
|
})
|
|
|
|
RegisterOperator(">=", &simple.Scaffold{
|
|
T: types.NewType("func(?1, ?1) bool"),
|
|
C: simple.TypeMatch([]string{
|
|
"func(int, int) bool", // greater-than-equal
|
|
"func(float, float) bool", // floating-point greater-than-equal
|
|
}),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
switch k := input[0].Type().Kind; k {
|
|
case types.KindInt:
|
|
return &types.BoolValue{
|
|
V: input[0].Int() >= input[1].Int(),
|
|
}, nil
|
|
|
|
case types.KindFloat:
|
|
// TODO: should we do an epsilon check?
|
|
return &types.BoolValue{
|
|
V: input[0].Float() >= input[1].Float(),
|
|
}, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unsupported kind: %+v", k)
|
|
}
|
|
},
|
|
})
|
|
|
|
// logical and
|
|
// TODO: is there a way for the engine to have
|
|
// short-circuit operators, and does it matter?
|
|
RegisterOperator("and", &simple.Scaffold{
|
|
T: types.NewType("func(bool, bool) bool"),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
return &types.BoolValue{
|
|
V: input[0].Bool() && input[1].Bool(),
|
|
}, nil
|
|
},
|
|
})
|
|
|
|
// logical or
|
|
RegisterOperator("or", &simple.Scaffold{
|
|
T: types.NewType("func(bool, bool) bool"),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
return &types.BoolValue{
|
|
V: input[0].Bool() || input[1].Bool(),
|
|
}, nil
|
|
},
|
|
})
|
|
|
|
// logical not (unary operator)
|
|
RegisterOperator("not", &simple.Scaffold{
|
|
T: types.NewType("func(bool) bool"),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
return &types.BoolValue{
|
|
V: !input[0].Bool(),
|
|
}, nil
|
|
},
|
|
})
|
|
|
|
// pi operator (this is an easter egg to demo a zero arg operator)
|
|
RegisterOperator("π", &simple.Scaffold{
|
|
T: types.NewType("func() float"),
|
|
F: func(ctx context.Context, input []types.Value) (types.Value, error) {
|
|
return &types.FloatValue{
|
|
V: math.Pi,
|
|
}, nil
|
|
},
|
|
})
|
|
|
|
// register a copy in the main function database
|
|
// XXX: use simple.Register instead?
|
|
funcs.Register(OperatorFuncName, func() interfaces.Func { return &OperatorFunc{} })
|
|
}
|
|
|
|
var _ interfaces.InferableFunc = &OperatorFunc{} // ensure it meets this expectation
|
|
|
|
// OperatorFuncs maps an operator to a list of callable function values.
|
|
var OperatorFuncs = make(map[string]*simple.Scaffold) // must initialize
|
|
|
|
// RegisterOperator registers the given string operator and function value
|
|
// implementation with the mini-database for this generalized, static,
|
|
// polymorphic operator implementation.
|
|
func RegisterOperator(operator string, scaffold *simple.Scaffold) {
|
|
if _, exists := OperatorFuncs[operator]; exists {
|
|
panic(fmt.Sprintf("operator %s already has an implementation", operator))
|
|
}
|
|
|
|
if scaffold == nil {
|
|
panic(fmt.Sprintf("no scaffold specified for operator %s", operator))
|
|
}
|
|
if scaffold.T == nil {
|
|
panic(fmt.Sprintf("no type specified for operator %s", operator))
|
|
}
|
|
if scaffold.T.Kind != types.KindFunc {
|
|
panic(fmt.Sprintf("operator %s type must be a func", operator))
|
|
}
|
|
if scaffold.T.HasVariant() {
|
|
panic(fmt.Sprintf("operator %s contains a variant type signature", operator))
|
|
}
|
|
// It's okay if scaffold.C is nil.
|
|
if scaffold.F == nil {
|
|
panic(fmt.Sprintf("no implementation specified for operator %s", operator))
|
|
}
|
|
|
|
for _, x := range scaffold.T.Ord {
|
|
if x == operatorArgName {
|
|
panic(fmt.Sprintf("can't use `%s` as an argName for operator `%s` with type `%+v`", x, operator, scaffold.T))
|
|
}
|
|
// yes this limits the arg max to 24 (`x`) including operator
|
|
// if the operator is `x`...
|
|
//if s := util.NumToAlpha(i); x != s {
|
|
// panic(fmt.Sprintf("arg for operator `%s` (index `%d`) should be named `%s`, not `%s`", operator, i, s, x))
|
|
//}
|
|
}
|
|
|
|
OperatorFuncs[operator] = scaffold // store a copy for ourselves
|
|
}
|
|
|
|
// LookupOperator returns the type for the operator you looked up. It errors if
|
|
// it doesn't exist, or if the arg length isn't equal to size.
|
|
func LookupOperator(operator string, size int) (*types.Type, error) {
|
|
scaffold, exists := OperatorFuncs[operator]
|
|
if !exists {
|
|
return nil, fmt.Errorf("operator not found")
|
|
}
|
|
|
|
typ := addOperatorArg(scaffold.T) // add in the `operatorArgName` arg
|
|
if len(typ.Ord) != size {
|
|
return nil, fmt.Errorf("operator has wrong size")
|
|
}
|
|
|
|
return typ, nil
|
|
}
|
|
|
|
// OperatorFunc is an operator function that performs an operation on N values.
|
|
// XXX: Can we wrap SimpleFunc instead of having the boilerplate here ourselves?
|
|
type OperatorFunc struct {
|
|
*docsUtil.Metadata
|
|
|
|
Type *types.Type // Kind == Function, including operator arg
|
|
|
|
init *interfaces.Init
|
|
last types.Value // last value received to use for diff
|
|
|
|
lastOp string
|
|
fn interfaces.FuncSig
|
|
|
|
result types.Value // last calculated output
|
|
}
|
|
|
|
// String returns a simple name for this function. This is needed so this struct
|
|
// can satisfy the pgraph.Vertex interface.
|
|
func (obj *OperatorFunc) String() string {
|
|
// TODO: return the exact operator if we can guarantee it doesn't change
|
|
return OperatorFuncName
|
|
}
|
|
|
|
// argNames returns the maximum list of possible argNames. This can be truncated
|
|
// if needed. The first arg name is the operator.
|
|
func (obj *OperatorFunc) argNames() ([]string, error) {
|
|
// we could just do this statically, but i did it dynamically so that I
|
|
// wouldn't ever have to remember to update this list...
|
|
m := 0 // max
|
|
for _, scaffold := range OperatorFuncs {
|
|
m = max(m, len(scaffold.T.Ord))
|
|
}
|
|
|
|
args := []string{operatorArgName}
|
|
for i := 0; i < m; i++ {
|
|
s := util.NumToAlpha(i)
|
|
if s == operatorArgName {
|
|
return nil, fmt.Errorf("can't use `%s` as arg name", operatorArgName)
|
|
}
|
|
args = append(args, s)
|
|
}
|
|
|
|
return args, nil
|
|
}
|
|
|
|
// findFunc tries to find the first available registered operator function that
|
|
// matches the Operator/Type pattern requested. If none is found it returns nil.
|
|
func (obj *OperatorFunc) findFunc(operator string) interfaces.FuncSig {
|
|
scaffold, exists := OperatorFuncs[operator]
|
|
if !exists {
|
|
return nil
|
|
}
|
|
//typ := removeOperatorArg(obj.Type) // remove operator so we can match...
|
|
//for _, fn := range fns {
|
|
// if err := fn.Type().Cmp(typ); err == nil { // found one!
|
|
// return fn
|
|
// }
|
|
//}
|
|
return scaffold.F
|
|
}
|
|
|
|
// ArgGen returns the Nth arg name for this function.
|
|
func (obj *OperatorFunc) ArgGen(index int) (string, error) {
|
|
seq, err := obj.argNames()
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
if l := len(seq); index >= l {
|
|
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
|
|
}
|
|
return seq[index], nil
|
|
}
|
|
|
|
// FuncInfer takes partial type and value information from the call site of this
|
|
// function so that it can build an appropriate type signature for it. The type
|
|
// signature may include unification variables.
|
|
func (obj *OperatorFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) {
|
|
// The operator must be known statically to be able to return a result.
|
|
if partialType == nil || len(partialValues) == 0 {
|
|
return nil, nil, fmt.Errorf("partials must not be nil or empty")
|
|
}
|
|
// redundant
|
|
//if partialType.Map == nil || len(partialType.Map) == 0 {
|
|
// return nil, nil, fmt.Errorf("must have at least one arg in operator func")
|
|
//}
|
|
//if partialType.Ord == nil || len(partialType.Ord) == 0 {
|
|
// return nil, nil, fmt.Errorf("must have at least one arg in operator func")
|
|
//}
|
|
|
|
val := partialValues[0]
|
|
if val == nil {
|
|
return nil, nil, fmt.Errorf("first arg for operator func must not be nil")
|
|
}
|
|
|
|
if err := val.Type().Cmp(types.TypeStr); err != nil { // op must be str
|
|
return nil, nil, fmt.Errorf("first arg for operator func must be an str")
|
|
}
|
|
op := val.Str() // known str
|
|
size := len(partialType.Ord) // we know size!
|
|
|
|
typ, err := LookupOperator(op, size)
|
|
if err != nil {
|
|
return nil, nil, errwrap.Wrapf(err, "error finding signature for operator `%s`", op)
|
|
}
|
|
if typ == nil {
|
|
return nil, nil, fmt.Errorf("no matching signature for operator `%s` could be found", op)
|
|
}
|
|
|
|
return typ, []*interfaces.UnificationInvariant{}, nil
|
|
}
|
|
|
|
// Build is run to turn the polymorphic, undetermined function, into the
|
|
// specific statically typed version. It is usually run after Unify completes,
|
|
// and must be run before Info() and any of the other Func interface methods are
|
|
// used. This function is idempotent, as long as the arg isn't changed between
|
|
// runs.
|
|
func (obj *OperatorFunc) Build(typ *types.Type) (*types.Type, error) {
|
|
// typ is the KindFunc signature we're trying to build...
|
|
if len(typ.Ord) < 1 {
|
|
return nil, fmt.Errorf("the operator function needs at least 1 arg")
|
|
}
|
|
if typ.Out == nil {
|
|
return nil, fmt.Errorf("return type of function must be specified")
|
|
}
|
|
if typ.Kind != types.KindFunc {
|
|
return nil, fmt.Errorf("unexpected build kind of: %v", typ.Kind)
|
|
}
|
|
|
|
// Change arg names to be what we expect...
|
|
if _, exists := typ.Map[typ.Ord[0]]; !exists {
|
|
return nil, fmt.Errorf("invalid build type")
|
|
}
|
|
|
|
//newTyp := typ.Copy()
|
|
newTyp := &types.Type{
|
|
Kind: typ.Kind, // copy
|
|
Map: make(map[string]*types.Type), // new
|
|
Ord: []string{}, // new
|
|
Out: typ.Out, // copy
|
|
}
|
|
for i, x := range typ.Ord { // remap arg names
|
|
//argName := util.NumToAlpha(i - 1)
|
|
//if i == 0 {
|
|
// argName = operatorArgName
|
|
//}
|
|
argName, err := obj.ArgGen(i)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
newTyp.Map[argName] = typ.Map[x]
|
|
newTyp.Ord = append(newTyp.Ord, argName)
|
|
}
|
|
|
|
obj.Type = newTyp // func type
|
|
return obj.Type, nil
|
|
}
|
|
|
|
// Validate tells us if the input struct takes a valid form.
|
|
func (obj *OperatorFunc) Validate() error {
|
|
if obj.Type == nil { // build must be run first
|
|
return fmt.Errorf("type is still unspecified")
|
|
}
|
|
if obj.Type.Kind != types.KindFunc {
|
|
return fmt.Errorf("type must be a kind of func")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Info returns some static info about itself. Build must be called before this
|
|
// will return correct data.
|
|
func (obj *OperatorFunc) Info() *interfaces.Info {
|
|
// Since this function implements FuncInfer we want sig to return nil to
|
|
// avoid an accidental return of unification variables when we should be
|
|
// getting them from FuncInfer, and not from here. (During unification!)
|
|
return &interfaces.Info{
|
|
Pure: true,
|
|
Memo: false,
|
|
Sig: obj.Type, // func kind, which includes operator arg as input
|
|
Err: obj.Validate(),
|
|
}
|
|
}
|
|
|
|
// Init runs some startup code for this function.
|
|
func (obj *OperatorFunc) Init(init *interfaces.Init) error {
|
|
obj.init = init
|
|
return nil
|
|
}
|
|
|
|
// Stream returns the changing values that this func has over time.
|
|
func (obj *OperatorFunc) Stream(ctx context.Context) error {
|
|
defer close(obj.init.Output) // the sender closes
|
|
for {
|
|
select {
|
|
case input, ok := <-obj.init.Input:
|
|
if !ok {
|
|
return nil // can't output any more
|
|
}
|
|
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
|
|
// return errwrap.Wrapf(err, "wrong function input")
|
|
//}
|
|
|
|
if obj.last != nil && input.Cmp(obj.last) == nil {
|
|
continue // value didn't change, skip it
|
|
}
|
|
obj.last = input // store for next
|
|
|
|
// programming error safety check...
|
|
programmingError := false
|
|
keys := []string{}
|
|
for k := range input.Struct() {
|
|
keys = append(keys, k)
|
|
if !util.StrInList(k, obj.Type.Ord) {
|
|
programmingError = true
|
|
}
|
|
}
|
|
if programmingError {
|
|
return fmt.Errorf("bad args, got: %v, want: %v", keys, obj.Type.Ord)
|
|
}
|
|
|
|
args, err := interfaces.StructToCallableArgs(input) // []types.Value, error)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
result, err := obj.Call(ctx, args) // (Value, error)
|
|
if err != nil {
|
|
return errwrap.Wrapf(err, "problem running function")
|
|
}
|
|
if result == nil {
|
|
return fmt.Errorf("computed function output was nil")
|
|
}
|
|
|
|
// if previous input was `2 + 4`, but now it
|
|
// changed to `1 + 5`, the result is still the
|
|
// same, so we can skip sending an update...
|
|
if obj.result != nil && result.Cmp(obj.result) == nil {
|
|
continue // result didn't change
|
|
}
|
|
obj.result = result // store new result
|
|
|
|
case <-ctx.Done():
|
|
return nil
|
|
}
|
|
|
|
select {
|
|
case obj.init.Output <- obj.result: // send
|
|
case <-ctx.Done():
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// Copy is implemented so that the obj.Type value is not lost if we copy this
|
|
// function.
|
|
func (obj *OperatorFunc) Copy() interfaces.Func {
|
|
return &OperatorFunc{
|
|
Type: obj.Type, // don't copy because we use this after unification
|
|
|
|
init: obj.init, // likely gets overwritten anyways
|
|
}
|
|
}
|
|
|
|
// Call this function with the input args and return the value if it is possible
|
|
// to do so at this time.
|
|
func (obj *OperatorFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) {
|
|
op := args[0].Str()
|
|
|
|
if op == "" {
|
|
// programming error
|
|
return nil, fmt.Errorf("operator cannot be empty, args: %v", args)
|
|
}
|
|
|
|
// operator selection is dynamic now, although mostly it
|
|
// should not change... to do so is probably uncommon...
|
|
if obj.fn == nil {
|
|
obj.fn = obj.findFunc(op)
|
|
|
|
} else if op != obj.lastOp {
|
|
// TODO: check sig is compatible instead?
|
|
return nil, fmt.Errorf("op changed from %s to %s", obj.lastOp, op)
|
|
}
|
|
|
|
if obj.fn == nil {
|
|
return nil, fmt.Errorf("func not found for operator `%s` with sig: `%+v`", op, obj.Type)
|
|
}
|
|
obj.lastOp = op
|
|
|
|
newArgs := []types.Value{}
|
|
for i, x := range args {
|
|
if i == 0 {
|
|
continue // skip over the operator
|
|
}
|
|
newArgs = append(newArgs, x)
|
|
}
|
|
|
|
return obj.fn(ctx, newArgs) // (Value, error)
|
|
}
|
|
|
|
// removeOperatorArg returns a copy of the input KindFunc type, without the
|
|
// operator arg which specifies which operator we're using. It *is* idempotent.
|
|
func removeOperatorArg(typ *types.Type) *types.Type {
|
|
if typ == nil {
|
|
return nil
|
|
}
|
|
if _, exists := typ.Map[operatorArgName]; !exists {
|
|
return typ // pass through
|
|
}
|
|
|
|
m := make(map[string]*types.Type)
|
|
ord := []string{}
|
|
for _, s := range typ.Ord {
|
|
if s == operatorArgName {
|
|
continue // remove the operator
|
|
}
|
|
m[s] = typ.Map[s]
|
|
ord = append(ord, s)
|
|
}
|
|
return &types.Type{
|
|
Kind: types.KindFunc,
|
|
Map: m,
|
|
Ord: ord,
|
|
Out: typ.Out,
|
|
}
|
|
}
|
|
|
|
// addOperatorArg returns a copy of the input KindFunc type, with the operator
|
|
// arg which specifies which operator we're using added. This is idempotent.
|
|
func addOperatorArg(typ *types.Type) *types.Type {
|
|
if typ == nil {
|
|
return nil
|
|
}
|
|
if _, exists := typ.Map[operatorArgName]; exists {
|
|
return typ // pass through
|
|
}
|
|
|
|
m := make(map[string]*types.Type)
|
|
m[operatorArgName] = types.TypeStr // add the operator
|
|
ord := []string{operatorArgName} // add the operator
|
|
for _, s := range typ.Ord {
|
|
m[s] = typ.Map[s]
|
|
ord = append(ord, s)
|
|
}
|
|
return &types.Type{
|
|
Kind: types.KindFunc,
|
|
Map: m,
|
|
Ord: ord,
|
|
Out: typ.Out,
|
|
}
|
|
}
|