Files
mgmt/lang/funcs/core/fmt/printf_func.go
James Shubin 12582e963d lang: funcs: core: Make module names public
This is needed for when we have nested modules.
2019-05-20 08:45:43 -04:00

374 lines
10 KiB
Go

// Mgmt
// Copyright (C) 2013-2019+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package corefmt
import (
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap"
)
func init() {
// FIXME: should this be named sprintf instead?
funcs.ModuleRegister(ModuleName, "printf", func() interfaces.Func { return &PrintfFunc{} })
}
const (
// XXX: does this need to be `a` ? -- for now yes, fix this compiler bug
//formatArgName = "format" // name of the first arg
formatArgName = "a" // name of the first arg
)
// PrintfFunc is a static polymorphic function that compiles a format string and
// returns the output as a string. It bases its output on the values passed in
// to it. It examines the type of the arguments at compile time and then
// determines the static function signature by parsing the format string and
// using that to determine the final function signature. One consequence of this
// is that the format string must be a static string which is known at compile
// time. This is reasonable, because if it was a reactive, changing string, then
// we could expect the type signature to change, which is not allowed in our
// statically typed language.
type PrintfFunc struct {
Type *types.Type // final full type of our function
init *interfaces.Init
last types.Value // last value received to use for diff
result string // last calculated output
closeChan chan struct{}
}
// Polymorphisms returns the possible type signature for this function. In this
// case, since the number of arguments can be infinite, it returns the final
// precise type if it can be gleamed from the format argument. If it cannot, it
// is because either the format argument was not known statically, or because
// it had an invalid format string.
func (obj *PrintfFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) {
if partialType == nil || len(partialValues) < 1 {
return nil, fmt.Errorf("first argument must be a static format string")
}
if partialType.Out != nil && partialType.Out.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("return value of printf must be str")
}
ord := partialType.Ord
if partialType.Map != nil {
if len(ord) < 1 {
return nil, fmt.Errorf("must have at least one arg in printf func")
}
if t, exists := partialType.Map[ord[0]]; exists && t != nil {
if t.Cmp(types.TypeStr) != nil {
return nil, fmt.Errorf("first arg for printf must be an str")
}
}
}
// FIXME: we'd like to pre-compute the interpolation if we can, so that
// we can run this code properly... for now, we can't, so it's a compile
// time error...
if partialValues[0] == nil {
return nil, fmt.Errorf("could not determine type from format string")
}
format := partialValues[0].Str() // must not panic
typList, err := parseFormatToTypeList(format)
if err != nil {
return nil, errwrap.Wrapf(err, "could not parse format string")
}
typ := &types.Type{
Kind: types.KindFunc, // function type
Map: make(map[string]*types.Type),
Ord: []string{},
Out: types.TypeStr,
}
// add first arg
typ.Map[formatArgName] = types.TypeStr
typ.Ord = append(typ.Ord, formatArgName)
for i, x := range typList {
name := util.NumToAlpha(i + 1) // +1 to skip the format arg
if name == formatArgName {
return nil, fmt.Errorf("could not build function with %d args", i+1)
}
// if we also had even more partial type information, check it!
if t, exists := partialType.Map[ord[i+1]]; exists && t != nil {
if err := t.Cmp(x); err != nil {
return nil, errwrap.Wrapf(err, "arg %d does not match expected type", i+1)
}
}
typ.Map[name] = x
typ.Ord = append(typ.Ord, name)
}
return []*types.Type{typ}, nil // return a list with a single possibility
}
// Build takes the now known function signature and stores it so that this
// function can appear to be static. That type is used to build our function
// statically.
func (obj *PrintfFunc) Build(typ *types.Type) error {
if typ.Kind != types.KindFunc {
return fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) < 1 {
return fmt.Errorf("the printf function needs at least one arg")
}
if typ.Out == nil {
return fmt.Errorf("return type of function must be specified")
}
if typ.Out.Cmp(types.TypeStr) != nil {
return fmt.Errorf("return type of function must be an str")
}
if typ.Map == nil {
return fmt.Errorf("invalid input type")
}
t0, exists := typ.Map[typ.Ord[0]]
if !exists || t0 == nil {
return fmt.Errorf("first arg must be specified")
}
if t0.Cmp(types.TypeStr) != nil {
return fmt.Errorf("first arg for printf must be an str")
}
obj.Type = typ // function type is now known!
return nil
}
// Validate makes sure we've built our struct properly. It is usually unused for
// normal functions that users can use directly.
func (obj *PrintfFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
return nil
}
// Info returns some static info about itself.
func (obj *PrintfFunc) Info() *interfaces.Info {
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: obj.Type,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *PrintfFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.closeChan = make(chan struct{})
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *PrintfFunc) Stream() error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
format := input.Struct()[formatArgName].Str()
values := []types.Value{}
for _, name := range obj.Type.Ord {
if name == formatArgName { // skip format arg
continue
}
x := input.Struct()[name]
values = append(values, x)
}
result, err := compileFormatToString(format, values)
if err != nil {
return err // no errwrap needed b/c helper func
}
if obj.result == result {
continue // result didn't change
}
obj.result = result // store new result
case <-obj.closeChan:
return nil
}
select {
case obj.init.Output <- &types.StrValue{
V: obj.result,
}:
case <-obj.closeChan:
return nil
}
}
}
// Close runs some shutdown code for this function and turns off the stream.
func (obj *PrintfFunc) Close() error {
close(obj.closeChan)
return nil
}
// valueToString prints our values how we expect for printf.
// FIXME: if this turns out to be useful, add it to the types package.
func valueToString(value types.Value) string {
// FIXME: this is just an "easy-out" implementation for now...
return fmt.Sprintf("%v", value.Value())
//switch x := value.Type().Kind; x {
//case types.KindBool:
// return value.String()
//case types.KindStr:
// return value.Str() // use this since otherwise it adds " & "
//case types.KindInt:
// return value.String()
//case types.KindFloat:
// // TODO: use formatting flags ?
// return value.String()
//}
//panic("unhandled type") // TODO: not fully implemented yet
}
// parseFormatToTypeList takes a format string and returns a list of types that
// it expects to use in the order found in the format string.
// FIXME: add support for more types, and add tests!
func parseFormatToTypeList(format string) ([]*types.Type, error) {
typList := []*types.Type{}
inType := false
for i := 0; i < len(format); i++ {
// some normal char...
if !inType && format[i] != '%' {
continue
}
// in a type or we're a %
if format[i] == '%' {
if inType {
// it's a %%
inType = false
} else {
// start looking for type specification!
inType = true
}
continue
}
// we must be in a type
switch format[i] {
case 't':
typList = append(typList, types.TypeBool)
case 's':
typList = append(typList, types.TypeStr)
case 'd':
typList = append(typList, types.TypeInt)
// TODO: parse fancy formats like %0.2f and stuff
case 'f':
typList = append(typList, types.TypeFloat)
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
default:
return nil, fmt.Errorf("invalid format string at %d", i)
}
inType = false // done
}
return typList, nil
}
// compileFormatToString takes a format string and a list of values and returns
// the compiled/templated output.
// FIXME: add support for more types, and add tests!
func compileFormatToString(format string, values []types.Value) (string, error) {
output := ""
ix := 0
inType := false
for i := 0; i < len(format); i++ {
// some normal char...
if !inType && format[i] != '%' {
output += string(format[i])
continue
}
// in a type or we're a %
if format[i] == '%' {
if inType {
// it's a %%
output += string(format[i])
inType = false
} else {
// start looking for type specification!
inType = true
}
continue
}
// we must be in a type
var typ *types.Type
switch format[i] {
case 't':
typ = types.TypeBool
case 's':
typ = types.TypeStr
case 'd':
typ = types.TypeInt
// TODO: parse fancy formats like %0.2f and stuff
case 'f':
typ = types.TypeFloat
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
default:
return "", fmt.Errorf("invalid format string at %d", i)
}
inType = false // done
if err := typ.Cmp(values[ix].Type()); err != nil {
return "", errwrap.Wrapf(err, "unexpected type")
}
output += valueToString(values[ix])
ix++ // consume one value
}
return output, nil
}