Files
mgmt/pgraph.go
James Shubin 06635dfa75 Rename GetRes() which is not descriptive, to Kind()
This used to be GetType(), but since now things are "resources", we want
to know what "kind" they are, since asking what "type" they are is
confusing, and makes less logical sense than "Kind".
2016-02-23 00:24:43 -05:00

635 lines
16 KiB
Go

// Mgmt
// Copyright (C) 2013-2016+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// Pgraph (Pointer Graph)
package main
import (
"errors"
"fmt"
"io/ioutil"
"log"
"os"
"os/exec"
"strconv"
"sync"
"syscall"
"time"
)
//go:generate stringer -type=graphState -output=graphstate_stringer.go
type graphState int
const (
graphNil graphState = iota
graphStarting
graphStarted
graphPausing
graphPaused
)
// The graph abstract data type (ADT) is defined as follows:
// * the directed graph arrows point from left to right ( -> )
// * the arrows point away from their dependencies (eg: arrows mean "before")
// * IOW, you might see package -> file -> service (where package runs first)
// * This is also the direction that the notify should happen in...
type Graph struct {
Name string
Adjacency map[*Vertex]map[*Vertex]*Edge // *Vertex -> *Vertex (edge)
state graphState
mutex sync.Mutex // used when modifying graph State variable
//Directed bool
}
type Vertex struct {
graph *Graph // store a pointer to the graph it's on
Res // anonymous field
data map[string]string // XXX: currently unused i think, remove?
}
type Edge struct {
Name string
}
func NewGraph(name string) *Graph {
return &Graph{
Name: name,
Adjacency: make(map[*Vertex]map[*Vertex]*Edge),
state: graphNil,
}
}
func NewVertex(r Res) *Vertex {
return &Vertex{
Res: r,
data: make(map[string]string),
}
}
func NewEdge(name string) *Edge {
return &Edge{
Name: name,
}
}
// returns the name of the graph
func (g *Graph) GetName() string {
return g.Name
}
// set name of the graph
func (g *Graph) SetName(name string) {
g.Name = name
}
func (g *Graph) GetState() graphState {
//g.mutex.Lock()
//defer g.mutex.Unlock()
return g.state
}
// set graph state and return previous state
func (g *Graph) SetState(state graphState) graphState {
g.mutex.Lock()
defer g.mutex.Unlock()
prev := g.GetState()
g.state = state
return prev
}
// store a pointer in the resource to it's parent vertex
func (g *Graph) SetVertex() {
for v := range g.GetVerticesChan() {
v.Res.SetVertex(v)
}
}
// add a new vertex to the graph
func (g *Graph) AddVertex(v *Vertex) {
if _, exists := g.Adjacency[v]; !exists {
g.Adjacency[v] = make(map[*Vertex]*Edge)
// store a pointer to the graph it's on for convenience and readability
v.graph = g
}
}
func (g *Graph) DeleteVertex(v *Vertex) {
delete(g.Adjacency, v)
for k := range g.Adjacency {
delete(g.Adjacency[k], v)
}
}
// adds a directed edge to the graph from v1 to v2
func (g *Graph) AddEdge(v1, v2 *Vertex, e *Edge) {
// NOTE: this doesn't allow more than one edge between two vertexes...
// TODO: is this a problem?
g.AddVertex(v1)
g.AddVertex(v2)
g.Adjacency[v1][v2] = e
}
// XXX: does it make sense to return a channel here?
// GetVertex finds the vertex in the graph with a particular search name
func (g *Graph) GetVertex(name string) chan *Vertex {
ch := make(chan *Vertex, 1)
go func(name string) {
for k := range g.Adjacency {
if k.GetName() == name {
ch <- k
break
}
}
close(ch)
}(name)
return ch
}
func (g *Graph) GetVertexMatch(obj Res) *Vertex {
for k := range g.Adjacency {
if k.Compare(obj) { // XXX test
return k
}
}
return nil
}
func (g *Graph) HasVertex(v *Vertex) bool {
if _, exists := g.Adjacency[v]; exists {
return true
}
//for k := range g.Adjacency {
// if k == v {
// return true
// }
//}
return false
}
// number of vertices in the graph
func (g *Graph) NumVertices() int {
return len(g.Adjacency)
}
// number of edges in the graph
func (g *Graph) NumEdges() int {
count := 0
for k := range g.Adjacency {
count += len(g.Adjacency[k])
}
return count
}
// get an array (slice) of all vertices in the graph
func (g *Graph) GetVertices() []*Vertex {
var vertices []*Vertex
for k := range g.Adjacency {
vertices = append(vertices, k)
}
return vertices
}
// returns a channel of all vertices in the graph
func (g *Graph) GetVerticesChan() chan *Vertex {
ch := make(chan *Vertex)
go func(ch chan *Vertex) {
for k := range g.Adjacency {
ch <- k
}
close(ch)
}(ch)
return ch
}
// make the graph pretty print
func (g *Graph) String() string {
return fmt.Sprintf("Vertices(%d), Edges(%d)", g.NumVertices(), g.NumEdges())
}
// output the graph in graphviz format
// https://en.wikipedia.org/wiki/DOT_%28graph_description_language%29
func (g *Graph) Graphviz() (out string) {
//digraph g {
// label="hello world";
// node [shape=box];
// A [label="A"];
// B [label="B"];
// C [label="C"];
// D [label="D"];
// E [label="E"];
// A -> B [label=f];
// B -> C [label=g];
// D -> E [label=h];
//}
out += fmt.Sprintf("digraph %v {\n", g.GetName())
out += fmt.Sprintf("\tlabel=\"%v\";\n", g.GetName())
//out += "\tnode [shape=box];\n"
str := ""
for i := range g.Adjacency { // reverse paths
out += fmt.Sprintf("\t%v [label=\"%v[%v]\"];\n", i.GetName(), i.Kind(), i.GetName())
for j := range g.Adjacency[i] {
k := g.Adjacency[i][j]
// use str for clearer output ordering
str += fmt.Sprintf("\t%v -> %v [label=%v];\n", i.GetName(), j.GetName(), k.Name)
}
}
out += str
out += "}\n"
return
}
// write out the graphviz data and run the correct graphviz filter command
func (g *Graph) ExecGraphviz(program, filename string) error {
switch program {
case "dot", "neato", "twopi", "circo", "fdp":
default:
return errors.New("Invalid graphviz program selected!")
}
if filename == "" {
return errors.New("No filename given!")
}
// run as a normal user if possible when run with sudo
uid, err1 := strconv.Atoi(os.Getenv("SUDO_UID"))
gid, err2 := strconv.Atoi(os.Getenv("SUDO_GID"))
err := ioutil.WriteFile(filename, []byte(g.Graphviz()), 0644)
if err != nil {
return errors.New("Error writing to filename!")
}
if err1 == nil && err2 == nil {
if err := os.Chown(filename, uid, gid); err != nil {
return errors.New("Error changing file owner!")
}
}
path, err := exec.LookPath(program)
if err != nil {
return errors.New("Graphviz is missing!")
}
out := fmt.Sprintf("%v.png", filename)
cmd := exec.Command(path, "-Tpng", fmt.Sprintf("-o%v", out), filename)
if err1 == nil && err2 == nil {
cmd.SysProcAttr = &syscall.SysProcAttr{}
cmd.SysProcAttr.Credential = &syscall.Credential{
Uid: uint32(uid),
Gid: uint32(gid),
}
}
_, err = cmd.Output()
if err != nil {
return errors.New("Error writing to image!")
}
return nil
}
// google/golang hackers apparently do not think contains should be a built-in!
func Contains(s []*Vertex, element *Vertex) bool {
for _, v := range s {
if element == v {
return true
}
}
return false
}
// return an array (slice) of all directed vertices to vertex v (??? -> v)
// ostimestamp should use this
func (g *Graph) IncomingGraphEdges(v *Vertex) []*Vertex {
// TODO: we might be able to implement this differently by reversing
// the Adjacency graph and then looping through it again...
var s []*Vertex
for k := range g.Adjacency { // reverse paths
for w := range g.Adjacency[k] {
if w == v {
s = append(s, k)
}
}
}
return s
}
// return an array (slice) of all vertices that vertex v points to (v -> ???)
// poke should use this
func (g *Graph) OutgoingGraphEdges(v *Vertex) []*Vertex {
var s []*Vertex
for k := range g.Adjacency[v] { // forward paths
s = append(s, k)
}
return s
}
// return an array (slice) of all vertices that connect to vertex v
func (g *Graph) GraphEdges(v *Vertex) []*Vertex {
var s []*Vertex
s = append(s, g.IncomingGraphEdges(v)...)
s = append(s, g.OutgoingGraphEdges(v)...)
return s
}
func (g *Graph) DFS(start *Vertex) []*Vertex {
var d []*Vertex // discovered
var s []*Vertex // stack
if _, exists := g.Adjacency[start]; !exists {
return nil // TODO: error
}
v := start
s = append(s, v)
for len(s) > 0 {
v, s = s[len(s)-1], s[:len(s)-1] // s.pop()
if !Contains(d, v) { // if not discovered
d = append(d, v) // label as discovered
for _, w := range g.GraphEdges(v) {
s = append(s, w)
}
}
}
return d
}
// build a new graph containing only vertices from the list...
func (g *Graph) FilterGraph(name string, vertices []*Vertex) *Graph {
newgraph := NewGraph(name)
for k1, x := range g.Adjacency {
for k2, e := range x {
//log.Printf("Filter: %v -> %v # %v", k1.Name, k2.Name, e.Name)
if Contains(vertices, k1) || Contains(vertices, k2) {
newgraph.AddEdge(k1, k2, e)
}
}
}
return newgraph
}
// return a channel containing the N disconnected graphs in our main graph
// we can then process each of these in parallel
func (g *Graph) GetDisconnectedGraphs() chan *Graph {
ch := make(chan *Graph)
go func() {
var start *Vertex
var d []*Vertex // discovered
c := g.NumVertices()
for len(d) < c {
// get an undiscovered vertex to start from
for _, s := range g.GetVertices() {
if !Contains(d, s) {
start = s
}
}
// dfs through the graph
dfs := g.DFS(start)
// filter all the collected elements into a new graph
newgraph := g.FilterGraph(g.Name, dfs)
// add number of elements found to found variable
d = append(d, dfs...) // extend
// return this new graph to the channel
ch <- newgraph
// if we've found all the elements, then we're done
// otherwise loop through to continue...
}
close(ch)
}()
return ch
}
// return the indegree for the graph, IOW the count of vertices that point to me
// NOTE: this returns the values for all vertices in one big lookup table
func (g *Graph) InDegree() map[*Vertex]int {
result := make(map[*Vertex]int)
for k := range g.Adjacency {
result[k] = 0 // initialize
}
for k := range g.Adjacency {
for z := range g.Adjacency[k] {
result[z]++
}
}
return result
}
// return the outdegree for the graph, IOW the count of vertices that point away
// NOTE: this returns the values for all vertices in one big lookup table
func (g *Graph) OutDegree() map[*Vertex]int {
result := make(map[*Vertex]int)
for k := range g.Adjacency {
result[k] = 0 // initialize
for _ = range g.Adjacency[k] {
result[k]++
}
}
return result
}
// returns a topological sort for the graph
// based on descriptions and code from wikipedia and rosetta code
// TODO: add memoization, and cache invalidation to speed this up :)
func (g *Graph) TopologicalSort() (result []*Vertex, ok bool) { // kahn's algorithm
var L []*Vertex // empty list that will contain the sorted elements
var S []*Vertex // set of all nodes with no incoming edges
remaining := make(map[*Vertex]int) // amount of edges remaining
for v, d := range g.InDegree() {
if d == 0 {
// accumulate set of all nodes with no incoming edges
S = append(S, v)
} else {
// initialize remaining edge count from indegree
remaining[v] = d
}
}
for len(S) > 0 {
last := len(S) - 1 // remove a node v from S
v := S[last]
S = S[:last]
L = append(L, v) // add v to tail of L
for n := range g.Adjacency[v] {
// for each node n remaining in the graph, consume from
// remaining, so for remaining[n] > 0
if remaining[n] > 0 {
remaining[n]-- // remove edge from the graph
if remaining[n] == 0 { // if n has no other incoming edges
S = append(S, n) // insert n into S
}
}
}
}
// if graph has edges, eg if any value in rem is > 0
for c, in := range remaining {
if in > 0 {
for n := range g.Adjacency[c] {
if remaining[n] > 0 {
return nil, false // not a dag!
}
}
}
}
return L, true
}
func (v *Vertex) Value(key string) (string, bool) {
if value, exists := v.data[key]; exists {
return value, true
}
return "", false
}
func (v *Vertex) SetValue(key, value string) bool {
v.data[key] = value
return true
}
func (g *Graph) GetVerticesKeyValue(key, value string) chan *Vertex {
ch := make(chan *Vertex)
go func() {
for vertex := range g.GetVerticesChan() {
if v, exists := vertex.Value(key); exists && v == value {
ch <- vertex
}
}
close(ch)
}()
return ch
}
// return a pointer to the graph a vertex is on
func (v *Vertex) GetGraph() *Graph {
return v.graph
}
func HeisenbergCount(ch chan *Vertex) int {
c := 0
for x := range ch {
_ = x
c++
}
return c
}
// main kick to start the graph
func (g *Graph) Start(wg *sync.WaitGroup, first bool) { // start or continue
t, _ := g.TopologicalSort()
// TODO: only calculate indegree if `first` is true to save resources
indegree := g.InDegree() // compute all of the indegree's
for _, v := range Reverse(t) {
if !v.Res.IsWatching() { // if Watch() is not running...
wg.Add(1)
// must pass in value to avoid races...
// see: https://ttboj.wordpress.com/2015/07/27/golang-parallelism-issues-causing-too-many-open-files-error/
go func(vv *Vertex) {
defer wg.Done()
vv.Res.Watch()
log.Printf("%v[%v]: Exited", vv.Kind(), vv.GetName())
}(v)
}
// selective poke: here we reduce the number of initial pokes
// to the minimum required to activate every vertex in the
// graph, either by direct action, or by getting poked by a
// vertex that was previously activated. if we poke each vertex
// that has no incoming edges, then we can be sure to reach the
// whole graph. Please note: this may mask certain optimization
// failures, such as any poke limiting code in Poke() or
// BackPoke(). You might want to disable this selective start
// when experimenting with and testing those elements.
// if we are unpausing (since it's not the first run of this
// function) we need to poke to *unpause* every graph vertex,
// and not just selectively the subset with no indegree.
if (!first) || indegree[v] == 0 {
// ensure state is started before continuing on to next vertex
for !v.Res.SendEvent(eventStart, true, false) {
if DEBUG {
// if SendEvent fails, we aren't up yet
log.Printf("%v[%v]: Retrying SendEvent(Start)", v.Kind(), v.GetName())
// sleep here briefly or otherwise cause
// a different goroutine to be scheduled
time.Sleep(1 * time.Millisecond)
}
}
}
}
}
func (g *Graph) Pause() {
t, _ := g.TopologicalSort()
for _, v := range t { // squeeze out the events...
v.Res.SendEvent(eventPause, true, false)
}
}
func (g *Graph) Exit() {
t, _ := g.TopologicalSort()
for _, v := range t { // squeeze out the events...
// turn off the taps...
// XXX: do this by sending an exit signal, and then returning
// when we hit the 'default' in the select statement!
// XXX: we can do this to quiesce, but it's not necessary now
v.Res.SendEvent(eventExit, true, false)
}
}
func (g *Graph) SetConvergedCallback(ctimeout int, converged chan bool) {
for v := range g.GetVerticesChan() {
v.Res.SetConvergedCallback(ctimeout, converged)
}
}
// in array function to test *vertices in a slice of *vertices
func HasVertex(v *Vertex, haystack []*Vertex) bool {
for _, r := range haystack {
if v == r {
return true
}
}
return false
}
// reverse a list of vertices
func Reverse(vs []*Vertex) []*Vertex {
//var out []*Vertex // XXX: golint suggests, but it fails testing
out := make([]*Vertex, 0) // empty list
l := len(vs)
for i := range vs {
out = append(out, vs[l-i-1])
}
return out
}