657 lines
18 KiB
Go
657 lines
18 KiB
Go
// Mgmt
|
|
// Copyright (C) 2013-2016+ James Shubin and the project contributors
|
|
// Written by James Shubin <james@shubin.ca> and the project contributors
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Affero General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Affero General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Affero General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package pgraph represents the internal "pointer graph" that we use.
|
|
package pgraph
|
|
|
|
import (
|
|
"fmt"
|
|
"sort"
|
|
"sync"
|
|
|
|
"github.com/purpleidea/mgmt/event"
|
|
"github.com/purpleidea/mgmt/resources"
|
|
|
|
errwrap "github.com/pkg/errors"
|
|
)
|
|
|
|
//go:generate stringer -type=graphState -output=graphstate_stringer.go
|
|
type graphState int
|
|
|
|
const (
|
|
graphStateNil graphState = iota
|
|
graphStateStarting
|
|
graphStateStarted
|
|
graphStatePausing
|
|
graphStatePaused
|
|
)
|
|
|
|
type Flags struct {
|
|
Debug bool
|
|
}
|
|
|
|
// Graph is the graph structure in this library.
|
|
// The graph abstract data type (ADT) is defined as follows:
|
|
// * the directed graph arrows point from left to right ( -> )
|
|
// * the arrows point away from their dependencies (eg: arrows mean "before")
|
|
// * IOW, you might see package -> file -> service (where package runs first)
|
|
// * This is also the direction that the notify should happen in...
|
|
type Graph struct {
|
|
Name string
|
|
Adjacency map[*Vertex]map[*Vertex]*Edge // *Vertex -> *Vertex (edge)
|
|
Flags Flags
|
|
state graphState
|
|
mutex *sync.Mutex // used when modifying graph State variable
|
|
wg *sync.WaitGroup
|
|
}
|
|
|
|
// Vertex is the primary vertex struct in this library.
|
|
type Vertex struct {
|
|
resources.Res // anonymous field
|
|
timestamp int64 // last updated timestamp ?
|
|
}
|
|
|
|
// Edge is the primary edge struct in this library.
|
|
type Edge struct {
|
|
Name string
|
|
Notify bool // should we send a refresh notification along this edge?
|
|
|
|
refresh bool // is there a notify pending for the dest vertex ?
|
|
}
|
|
|
|
// NewGraph builds a new graph.
|
|
func NewGraph(name string) *Graph {
|
|
return &Graph{
|
|
Name: name,
|
|
Adjacency: make(map[*Vertex]map[*Vertex]*Edge),
|
|
state: graphStateNil,
|
|
// ptr b/c: "A WaitGroup must not be copied after first use."
|
|
wg: &sync.WaitGroup{},
|
|
}
|
|
}
|
|
|
|
// NewVertex returns a new graph vertex struct with a contained resource.
|
|
func NewVertex(r resources.Res) *Vertex {
|
|
return &Vertex{
|
|
Res: r,
|
|
}
|
|
}
|
|
|
|
// NewEdge returns a new graph edge struct.
|
|
func NewEdge(name string) *Edge {
|
|
return &Edge{
|
|
Name: name,
|
|
}
|
|
}
|
|
|
|
// Refresh returns the pending refresh status of this edge.
|
|
func (obj *Edge) Refresh() bool {
|
|
return obj.refresh
|
|
}
|
|
|
|
// SetRefresh sets the pending refresh status of this edge.
|
|
func (obj *Edge) SetRefresh(b bool) {
|
|
obj.refresh = b
|
|
}
|
|
|
|
// Copy makes a copy of the graph struct
|
|
func (g *Graph) Copy() *Graph {
|
|
newGraph := &Graph{
|
|
Name: g.Name,
|
|
Adjacency: make(map[*Vertex]map[*Vertex]*Edge, len(g.Adjacency)),
|
|
Flags: g.Flags,
|
|
state: g.state,
|
|
mutex: g.mutex,
|
|
wg: g.wg,
|
|
}
|
|
for k, v := range g.Adjacency {
|
|
newGraph.Adjacency[k] = v // copy
|
|
}
|
|
return newGraph
|
|
}
|
|
|
|
// GetName returns the name of the graph.
|
|
func (g *Graph) GetName() string {
|
|
return g.Name
|
|
}
|
|
|
|
// SetName sets the name of the graph.
|
|
func (g *Graph) SetName(name string) {
|
|
g.Name = name
|
|
}
|
|
|
|
// getState returns the state of the graph. This state is used for optimizing
|
|
// certain algorithms by knowing what part of processing the graph is currently
|
|
// undergoing.
|
|
func (g *Graph) getState() graphState {
|
|
//g.mutex.Lock()
|
|
//defer g.mutex.Unlock()
|
|
return g.state
|
|
}
|
|
|
|
// setState sets the graph state and returns the previous state.
|
|
func (g *Graph) setState(state graphState) graphState {
|
|
g.mutex.Lock()
|
|
defer g.mutex.Unlock()
|
|
prev := g.getState()
|
|
g.state = state
|
|
return prev
|
|
}
|
|
|
|
// AddVertex uses variadic input to add all listed vertices to the graph
|
|
func (g *Graph) AddVertex(xv ...*Vertex) {
|
|
for _, v := range xv {
|
|
if _, exists := g.Adjacency[v]; !exists {
|
|
g.Adjacency[v] = make(map[*Vertex]*Edge)
|
|
}
|
|
}
|
|
}
|
|
|
|
// DeleteVertex deletes a particular vertex from the graph.
|
|
func (g *Graph) DeleteVertex(v *Vertex) {
|
|
delete(g.Adjacency, v)
|
|
for k := range g.Adjacency {
|
|
delete(g.Adjacency[k], v)
|
|
}
|
|
}
|
|
|
|
// AddEdge adds a directed edge to the graph from v1 to v2.
|
|
func (g *Graph) AddEdge(v1, v2 *Vertex, e *Edge) {
|
|
// NOTE: this doesn't allow more than one edge between two vertexes...
|
|
g.AddVertex(v1, v2) // supports adding N vertices now
|
|
// TODO: check if an edge exists to avoid overwriting it!
|
|
// NOTE: VertexMerge() depends on overwriting it at the moment...
|
|
g.Adjacency[v1][v2] = e
|
|
}
|
|
|
|
// DeleteEdge deletes a particular edge from the graph.
|
|
// FIXME: add test cases
|
|
func (g *Graph) DeleteEdge(e *Edge) {
|
|
for v1 := range g.Adjacency {
|
|
for v2, edge := range g.Adjacency[v1] {
|
|
if e == edge {
|
|
delete(g.Adjacency[v1], v2)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// GetVertexMatch searches for an equivalent resource in the graph and returns
|
|
// the vertex it is found in, or nil if not found.
|
|
func (g *Graph) GetVertexMatch(obj resources.Res) *Vertex {
|
|
for k := range g.Adjacency {
|
|
if k.Res.Compare(obj) {
|
|
return k
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// HasVertex returns if the input vertex exists in the graph.
|
|
func (g *Graph) HasVertex(v *Vertex) bool {
|
|
if _, exists := g.Adjacency[v]; exists {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// NumVertices returns the number of vertices in the graph.
|
|
func (g *Graph) NumVertices() int {
|
|
return len(g.Adjacency)
|
|
}
|
|
|
|
// NumEdges returns the number of edges in the graph.
|
|
func (g *Graph) NumEdges() int {
|
|
count := 0
|
|
for k := range g.Adjacency {
|
|
count += len(g.Adjacency[k])
|
|
}
|
|
return count
|
|
}
|
|
|
|
// GetVertices returns a randomly sorted slice of all vertices in the graph
|
|
// The order is random, because the map implementation is intentionally so!
|
|
func (g *Graph) GetVertices() []*Vertex {
|
|
var vertices []*Vertex
|
|
for k := range g.Adjacency {
|
|
vertices = append(vertices, k)
|
|
}
|
|
return vertices
|
|
}
|
|
|
|
// GetVerticesChan returns a channel of all vertices in the graph.
|
|
func (g *Graph) GetVerticesChan() chan *Vertex {
|
|
ch := make(chan *Vertex)
|
|
go func(ch chan *Vertex) {
|
|
for k := range g.Adjacency {
|
|
ch <- k
|
|
}
|
|
close(ch)
|
|
}(ch)
|
|
return ch
|
|
}
|
|
|
|
// VertexSlice is a linear list of vertices. It can be sorted.
|
|
type VertexSlice []*Vertex
|
|
|
|
func (vs VertexSlice) Len() int { return len(vs) }
|
|
func (vs VertexSlice) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] }
|
|
func (vs VertexSlice) Less(i, j int) bool { return vs[i].String() < vs[j].String() }
|
|
|
|
// GetVerticesSorted returns a sorted slice of all vertices in the graph
|
|
// The order is sorted by String() to avoid the non-determinism in the map type
|
|
func (g *Graph) GetVerticesSorted() []*Vertex {
|
|
var vertices []*Vertex
|
|
for k := range g.Adjacency {
|
|
vertices = append(vertices, k)
|
|
}
|
|
sort.Sort(VertexSlice(vertices)) // add determinism
|
|
return vertices
|
|
}
|
|
|
|
// String makes the graph pretty print.
|
|
func (g *Graph) String() string {
|
|
return fmt.Sprintf("Vertices(%d), Edges(%d)", g.NumVertices(), g.NumEdges())
|
|
}
|
|
|
|
// String returns the canonical form for a vertex
|
|
func (v *Vertex) String() string {
|
|
return fmt.Sprintf("%s[%s]", v.Res.Kind(), v.Res.GetName())
|
|
}
|
|
|
|
// IncomingGraphVertices returns an array (slice) of all directed vertices to
|
|
// vertex v (??? -> v). OKTimestamp should probably use this.
|
|
func (g *Graph) IncomingGraphVertices(v *Vertex) []*Vertex {
|
|
// TODO: we might be able to implement this differently by reversing
|
|
// the Adjacency graph and then looping through it again...
|
|
var s []*Vertex
|
|
for k := range g.Adjacency { // reverse paths
|
|
for w := range g.Adjacency[k] {
|
|
if w == v {
|
|
s = append(s, k)
|
|
}
|
|
}
|
|
}
|
|
return s
|
|
}
|
|
|
|
// OutgoingGraphVertices returns an array (slice) of all vertices that vertex v
|
|
// points to (v -> ???). Poke should probably use this.
|
|
func (g *Graph) OutgoingGraphVertices(v *Vertex) []*Vertex {
|
|
var s []*Vertex
|
|
for k := range g.Adjacency[v] { // forward paths
|
|
s = append(s, k)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// GraphVertices returns an array (slice) of all vertices that connect to vertex v.
|
|
// This is the union of IncomingGraphVertices and OutgoingGraphVertices.
|
|
func (g *Graph) GraphVertices(v *Vertex) []*Vertex {
|
|
var s []*Vertex
|
|
s = append(s, g.IncomingGraphVertices(v)...)
|
|
s = append(s, g.OutgoingGraphVertices(v)...)
|
|
return s
|
|
}
|
|
|
|
// IncomingGraphEdges returns all of the edges that point to vertex v (??? -> v).
|
|
func (g *Graph) IncomingGraphEdges(v *Vertex) []*Edge {
|
|
var edges []*Edge
|
|
for v1 := range g.Adjacency { // reverse paths
|
|
for v2, e := range g.Adjacency[v1] {
|
|
if v2 == v {
|
|
edges = append(edges, e)
|
|
}
|
|
}
|
|
}
|
|
return edges
|
|
}
|
|
|
|
// OutgoingGraphEdges returns all of the edges that point from vertex v (v -> ???).
|
|
func (g *Graph) OutgoingGraphEdges(v *Vertex) []*Edge {
|
|
var edges []*Edge
|
|
for _, e := range g.Adjacency[v] { // forward paths
|
|
edges = append(edges, e)
|
|
}
|
|
return edges
|
|
}
|
|
|
|
// GraphEdges returns an array (slice) of all edges that connect to vertex v.
|
|
// This is the union of IncomingGraphEdges and OutgoingGraphEdges.
|
|
func (g *Graph) GraphEdges(v *Vertex) []*Edge {
|
|
var edges []*Edge
|
|
edges = append(edges, g.IncomingGraphEdges(v)...)
|
|
edges = append(edges, g.OutgoingGraphEdges(v)...)
|
|
return edges
|
|
}
|
|
|
|
// DFS returns a depth first search for the graph, starting at the input vertex.
|
|
func (g *Graph) DFS(start *Vertex) []*Vertex {
|
|
var d []*Vertex // discovered
|
|
var s []*Vertex // stack
|
|
if _, exists := g.Adjacency[start]; !exists {
|
|
return nil // TODO: error
|
|
}
|
|
v := start
|
|
s = append(s, v)
|
|
for len(s) > 0 {
|
|
v, s = s[len(s)-1], s[:len(s)-1] // s.pop()
|
|
|
|
if !VertexContains(v, d) { // if not discovered
|
|
d = append(d, v) // label as discovered
|
|
|
|
for _, w := range g.GraphVertices(v) {
|
|
s = append(s, w)
|
|
}
|
|
}
|
|
}
|
|
return d
|
|
}
|
|
|
|
// FilterGraph builds a new graph containing only vertices from the list.
|
|
func (g *Graph) FilterGraph(name string, vertices []*Vertex) *Graph {
|
|
newgraph := NewGraph(name)
|
|
for k1, x := range g.Adjacency {
|
|
for k2, e := range x {
|
|
//log.Printf("Filter: %s -> %s # %s", k1.Name, k2.Name, e.Name)
|
|
if VertexContains(k1, vertices) || VertexContains(k2, vertices) {
|
|
newgraph.AddEdge(k1, k2, e)
|
|
}
|
|
}
|
|
}
|
|
return newgraph
|
|
}
|
|
|
|
// GetDisconnectedGraphs returns a channel containing the N disconnected graphs
|
|
// in our main graph. We can then process each of these in parallel.
|
|
func (g *Graph) GetDisconnectedGraphs() chan *Graph {
|
|
ch := make(chan *Graph)
|
|
go func() {
|
|
var start *Vertex
|
|
var d []*Vertex // discovered
|
|
c := g.NumVertices()
|
|
for len(d) < c {
|
|
|
|
// get an undiscovered vertex to start from
|
|
for _, s := range g.GetVertices() {
|
|
if !VertexContains(s, d) {
|
|
start = s
|
|
}
|
|
}
|
|
|
|
// dfs through the graph
|
|
dfs := g.DFS(start)
|
|
// filter all the collected elements into a new graph
|
|
newgraph := g.FilterGraph(g.Name, dfs)
|
|
|
|
// add number of elements found to found variable
|
|
d = append(d, dfs...) // extend
|
|
|
|
// return this new graph to the channel
|
|
ch <- newgraph
|
|
|
|
// if we've found all the elements, then we're done
|
|
// otherwise loop through to continue...
|
|
}
|
|
close(ch)
|
|
}()
|
|
return ch
|
|
}
|
|
|
|
// InDegree returns the count of vertices that point to me in one big lookup map.
|
|
func (g *Graph) InDegree() map[*Vertex]int {
|
|
result := make(map[*Vertex]int)
|
|
for k := range g.Adjacency {
|
|
result[k] = 0 // initialize
|
|
}
|
|
|
|
for k := range g.Adjacency {
|
|
for z := range g.Adjacency[k] {
|
|
result[z]++
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// OutDegree returns the count of vertices that point away in one big lookup map.
|
|
func (g *Graph) OutDegree() map[*Vertex]int {
|
|
result := make(map[*Vertex]int)
|
|
|
|
for k := range g.Adjacency {
|
|
result[k] = 0 // initialize
|
|
for range g.Adjacency[k] {
|
|
result[k]++
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// TopologicalSort returns the sort of graph vertices in that order.
|
|
// based on descriptions and code from wikipedia and rosetta code
|
|
// TODO: add memoization, and cache invalidation to speed this up :)
|
|
func (g *Graph) TopologicalSort() ([]*Vertex, error) { // kahn's algorithm
|
|
var L []*Vertex // empty list that will contain the sorted elements
|
|
var S []*Vertex // set of all nodes with no incoming edges
|
|
remaining := make(map[*Vertex]int) // amount of edges remaining
|
|
|
|
for v, d := range g.InDegree() {
|
|
if d == 0 {
|
|
// accumulate set of all nodes with no incoming edges
|
|
S = append(S, v)
|
|
} else {
|
|
// initialize remaining edge count from indegree
|
|
remaining[v] = d
|
|
}
|
|
}
|
|
|
|
for len(S) > 0 {
|
|
last := len(S) - 1 // remove a node v from S
|
|
v := S[last]
|
|
S = S[:last]
|
|
L = append(L, v) // add v to tail of L
|
|
for n := range g.Adjacency[v] {
|
|
// for each node n remaining in the graph, consume from
|
|
// remaining, so for remaining[n] > 0
|
|
if remaining[n] > 0 {
|
|
remaining[n]-- // remove edge from the graph
|
|
if remaining[n] == 0 { // if n has no other incoming edges
|
|
S = append(S, n) // insert n into S
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if graph has edges, eg if any value in rem is > 0
|
|
for c, in := range remaining {
|
|
if in > 0 {
|
|
for n := range g.Adjacency[c] {
|
|
if remaining[n] > 0 {
|
|
return nil, fmt.Errorf("Not a dag!")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return L, nil
|
|
}
|
|
|
|
// Reachability finds the shortest path in a DAG from a to b, and returns the
|
|
// slice of vertices that matched this particular path including both a and b.
|
|
// It returns nil if a or b is nil, and returns empty list if no path is found.
|
|
// Since there could be more than one possible result for this operation, we
|
|
// arbitrarily choose one of the shortest possible. As a result, this should
|
|
// actually return a tree if we cared about correctness.
|
|
// This operates by a recursive algorithm; a more efficient version is likely.
|
|
// If you don't give this function a DAG, you might cause infinite recursion!
|
|
func (g *Graph) Reachability(a, b *Vertex) []*Vertex {
|
|
if a == nil || b == nil {
|
|
return nil
|
|
}
|
|
vertices := g.OutgoingGraphVertices(a) // what points away from a ?
|
|
if len(vertices) == 0 {
|
|
return []*Vertex{} // nope
|
|
}
|
|
if VertexContains(b, vertices) {
|
|
return []*Vertex{a, b} // found
|
|
}
|
|
// TODO: parallelize this with go routines?
|
|
var collected = make([][]*Vertex, len(vertices))
|
|
pick := -1
|
|
for i, v := range vertices {
|
|
collected[i] = g.Reachability(v, b) // find b by recursion
|
|
if l := len(collected[i]); l > 0 {
|
|
// pick shortest path
|
|
// TODO: technically i should return a tree
|
|
if pick < 0 || l < len(collected[pick]) {
|
|
pick = i
|
|
}
|
|
}
|
|
}
|
|
if pick < 0 {
|
|
return []*Vertex{} // nope
|
|
}
|
|
result := []*Vertex{a} // tack on a
|
|
result = append(result, collected[pick]...)
|
|
return result
|
|
}
|
|
|
|
// GraphSync updates the oldGraph so that it matches the newGraph receiver. It
|
|
// leaves identical elements alone so that they don't need to be refreshed.
|
|
// FIXME: add test cases
|
|
func (g *Graph) GraphSync(oldGraph *Graph) (*Graph, error) {
|
|
|
|
if oldGraph == nil {
|
|
oldGraph = NewGraph(g.GetName()) // copy over the name
|
|
}
|
|
oldGraph.SetName(g.GetName()) // overwrite the name
|
|
|
|
var lookup = make(map[*Vertex]*Vertex)
|
|
var vertexKeep []*Vertex // list of vertices which are the same in new graph
|
|
var edgeKeep []*Edge // list of vertices which are the same in new graph
|
|
|
|
for v := range g.Adjacency { // loop through the vertices (resources)
|
|
res := v.Res // resource
|
|
|
|
vertex := oldGraph.GetVertexMatch(res)
|
|
if vertex == nil { // no match found
|
|
if err := res.Init(); err != nil {
|
|
return nil, errwrap.Wrapf(err, "could not Init() resource")
|
|
}
|
|
vertex = NewVertex(res)
|
|
oldGraph.AddVertex(vertex) // call standalone in case not part of an edge
|
|
}
|
|
lookup[v] = vertex // used for constructing edges
|
|
vertexKeep = append(vertexKeep, vertex) // append
|
|
}
|
|
|
|
// get rid of any vertices we shouldn't keep (that aren't in new graph)
|
|
for v := range oldGraph.Adjacency {
|
|
if !VertexContains(v, vertexKeep) {
|
|
// wait for exit before starting new graph!
|
|
v.SendEvent(event.EventExit, true, false)
|
|
oldGraph.DeleteVertex(v)
|
|
}
|
|
}
|
|
|
|
// compare edges
|
|
for v1 := range g.Adjacency { // loop through the vertices (resources)
|
|
for v2, e := range g.Adjacency[v1] {
|
|
// we have an edge!
|
|
|
|
// lookup vertices (these should exist now)
|
|
//res1 := v1.Res // resource
|
|
//res2 := v2.Res
|
|
//vertex1 := oldGraph.GetVertexMatch(res1)
|
|
//vertex2 := oldGraph.GetVertexMatch(res2)
|
|
vertex1, exists1 := lookup[v1]
|
|
vertex2, exists2 := lookup[v2]
|
|
if !exists1 || !exists2 { // no match found, bug?
|
|
//if vertex1 == nil || vertex2 == nil { // no match found
|
|
return nil, fmt.Errorf("New vertices weren't found!") // programming error
|
|
}
|
|
|
|
edge, exists := oldGraph.Adjacency[vertex1][vertex2]
|
|
if !exists || edge.Name != e.Name { // TODO: edgeCmp
|
|
edge = e // use or overwrite edge
|
|
}
|
|
oldGraph.Adjacency[vertex1][vertex2] = edge // store it (AddEdge)
|
|
edgeKeep = append(edgeKeep, edge) // mark as saved
|
|
}
|
|
}
|
|
|
|
// delete unused edges
|
|
for v1 := range oldGraph.Adjacency {
|
|
for _, e := range oldGraph.Adjacency[v1] {
|
|
// we have an edge!
|
|
if !EdgeContains(e, edgeKeep) {
|
|
oldGraph.DeleteEdge(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
return oldGraph, nil
|
|
}
|
|
|
|
// GraphMetas returns a list of pointers to each of the resource MetaParams.
|
|
func (g *Graph) GraphMetas() []*resources.MetaParams {
|
|
metas := []*resources.MetaParams{}
|
|
for v := range g.Adjacency { // loop through the vertices (resources))
|
|
res := v.Res // resource
|
|
meta := res.Meta()
|
|
metas = append(metas, meta)
|
|
}
|
|
return metas
|
|
}
|
|
|
|
// AssociateData associates some data with the object in the graph in question.
|
|
func (g *Graph) AssociateData(data *resources.Data) {
|
|
for k := range g.Adjacency {
|
|
k.Res.AssociateData(data)
|
|
}
|
|
}
|
|
|
|
// VertexContains is an "in array" function to test for a vertex in a slice of vertices.
|
|
func VertexContains(needle *Vertex, haystack []*Vertex) bool {
|
|
for _, v := range haystack {
|
|
if needle == v {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// EdgeContains is an "in array" function to test for an edge in a slice of edges.
|
|
func EdgeContains(needle *Edge, haystack []*Edge) bool {
|
|
for _, v := range haystack {
|
|
if needle == v {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Reverse reverses a list of vertices.
|
|
func Reverse(vs []*Vertex) []*Vertex {
|
|
//var out []*Vertex // XXX: golint suggests, but it fails testing
|
|
out := make([]*Vertex, 0) // empty list
|
|
l := len(vs)
|
|
for i := range vs {
|
|
out = append(out, vs[l-i-1])
|
|
}
|
|
return out
|
|
}
|