// Mgmt // Copyright (C) 2013-2023+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . package funcs import ( "context" "fmt" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // LookupDefaultFuncName is the name this function is registered as. // This starts with an underscore so that it cannot be used from the // lexer. LookupDefaultFuncName = "_lookup_default" // arg names... lookupDefaultArgNameListOrMap = "listormap" lookupDefaultArgNameIndexOrKey = "indexorkey" lookupDefaultArgNameDefault = "default" ) func init() { Register(LookupDefaultFuncName, func() interfaces.Func { return &LookupDefaultFunc{} }) // must register the func and name } var _ interfaces.PolyFunc = &LookupDefaultFunc{} // ensure it meets this expectation // LookupDefaultFunc is a list index or map key lookup function. It does both // because the current syntax in the parser is identical, so it's convenient to // mix the two together. This calls out to some of the code in the // ListLookupDefaultFunc and MapLookupDefaultFunc implementations. If the index // or key for this input doesn't exist, then it will return the default value // you specified for this function. type LookupDefaultFunc struct { Type *types.Type // Kind == List OR Map, that is used as the list/map we lookup in //init *interfaces.Init fn interfaces.PolyFunc // handle to ListLookupDefaultFunc or MapLookupDefaultFunc } // String returns a simple name for this function. This is needed so this struct // can satisfy the pgraph.Vertex interface. func (obj *LookupDefaultFunc) String() string { return LookupDefaultFuncName } // ArgGen returns the Nth arg name for this function. func (obj *LookupDefaultFunc) ArgGen(index int) (string, error) { seq := []string{lookupDefaultArgNameListOrMap, lookupDefaultArgNameIndexOrKey, lookupDefaultArgNameDefault} if l := len(seq); index >= l { return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) } return seq[index], nil } // Unify returns the list of invariants that this func produces. func (obj *LookupDefaultFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) { var invariants []interfaces.Invariant var invar interfaces.Invariant // func(list T1, index int, default T3) T3 // (list: []T3 => T3 aka T1 => T3) // OR // func(map T1, key T2, default T3) T3 // (map: T2 => T3) listOrMapName, err := obj.ArgGen(0) if err != nil { return nil, err } indexOrKeyName, err := obj.ArgGen(1) if err != nil { return nil, err } defaultName, err := obj.ArgGen(2) if err != nil { return nil, err } dummyListOrMap := &interfaces.ExprAny{} // corresponds to the list or map type dummyIndexOrKey := &interfaces.ExprAny{} // corresponds to the index or key type dummyDefault := &interfaces.ExprAny{} // corresponds to the default type dummyOut := &interfaces.ExprAny{} // corresponds to the out string // default type and out are the same invar = &interfaces.EqualityInvariant{ Expr1: dummyDefault, Expr2: dummyOut, } invariants = append(invariants, invar) ors := []interfaces.Invariant{} // solve only one from this list var listInvariants []interfaces.Invariant // relationship between T1 and T3 invar = &interfaces.EqualityWrapListInvariant{ Expr1: dummyListOrMap, Expr2Val: dummyDefault, } listInvariants = append(listInvariants, invar) // the index has to be an int invar = &interfaces.EqualsInvariant{ Expr: dummyIndexOrKey, Type: types.TypeInt, } listInvariants = append(listInvariants, invar) // all of these need to be true together and := &interfaces.ConjunctionInvariant{ Invariants: listInvariants, } ors = append(ors, and) // one solution added! // OR // relationship between T1, T2 and T3 mapInvariant := &interfaces.EqualityWrapMapInvariant{ Expr1: dummyListOrMap, Expr2Key: dummyIndexOrKey, Expr2Val: dummyDefault, } ors = append(ors, mapInvariant) // one solution added! invar = &interfaces.ExclusiveInvariant{ Invariants: ors, // one and only one of these should be true } invariants = append(invariants, invar) // full function mapped := make(map[string]interfaces.Expr) ordered := []string{listOrMapName, indexOrKeyName, defaultName} mapped[listOrMapName] = dummyListOrMap mapped[indexOrKeyName] = dummyIndexOrKey mapped[defaultName] = dummyDefault invar = &interfaces.EqualityWrapFuncInvariant{ Expr1: expr, // maps directly to us! Expr2Map: mapped, Expr2Ord: ordered, Expr2Out: dummyOut, } invariants = append(invariants, invar) // generator function fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) { for _, invariant := range fnInvariants { // search for this special type of invariant cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant) if !ok { continue } // did we find the mapping from us to ExprCall ? if cfavInvar.Func != expr { continue } // cfavInvar.Expr is the ExprCall! (the return pointer) // cfavInvar.Args are the args that ExprCall uses! if l := len(cfavInvar.Args); l != 3 { return nil, fmt.Errorf("unable to build function with %d args", l) } var invariants []interfaces.Invariant var invar interfaces.Invariant // add the relationship to the returned value invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Expr, Expr2: dummyOut, } invariants = append(invariants, invar) // add the relationships to the called args invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[0], Expr2: dummyListOrMap, } invariants = append(invariants, invar) invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[1], Expr2: dummyIndexOrKey, } invariants = append(invariants, invar) invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[2], Expr2: dummyDefault, } invariants = append(invariants, invar) // If we figure out all of these types, we'll know the // full type... var t1 *types.Type // list or map type var t2 *types.Type // list or map index/key type var t3 *types.Type // list or map val type // validateArg0 checks: list or map T1 validateArg0 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } // we happen to have a list or a map! if k := typ.Kind; k != types.KindList && k != types.KindMap { return fmt.Errorf("unable to build function with 0th arg of kind: %s", k) } //isList := typ.Kind == types.KindList isMap := typ.Kind == types.KindMap if isMap && typ.Key == nil { // programming error return fmt.Errorf("map is missing type") } if typ.Val == nil { // used for list or map // programming error return fmt.Errorf("map/list is missing type") } if err := typ.Cmp(t1); t1 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } if isMap { if err := typ.Key.Cmp(t2); t2 != nil && err != nil { return errwrap.Wrapf(err, "input key type was inconsistent") } } if err := typ.Val.Cmp(t3); t3 != nil && err != nil { return errwrap.Wrapf(err, "input val type was inconsistent") } // learn! t1 = typ if isMap { t2 = typ.Key } else if t1 != nil && t3 != nil { t2 = types.TypeInt } t3 = typ.Val return nil } // validateArg1 checks: list index validateListArg1 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } if typ.Kind != types.KindInt { return errwrap.Wrapf(err, "input index type was inconsistent") } // learn! t2 = typ return nil } // validateArg1 checks: map key T2 validateMapArg1 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } if err := typ.Cmp(t2); t2 != nil && err != nil { return errwrap.Wrapf(err, "input key type was inconsistent") } if t1 != nil { if err := typ.Cmp(t1.Key); err != nil { return errwrap.Wrapf(err, "input key type was inconsistent") } } if t3 != nil { t := &types.Type{ // build t1 Kind: types.KindMap, Key: typ, // t2 Val: t3, } if err := t.Cmp(t1); t1 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } t1 = t // learn! } // learn! t2 = typ return nil } // validateArg1 checks: list index validateArg1 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } isList := typ.Kind == types.KindList isMap := typ.Kind == types.KindMap if isList { return validateListArg1(typ) } if isMap { return validateMapArg1(typ) } return nil } // validateArg2 checks: list or map val T3 validateArg2 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } if err := typ.Cmp(t3); t3 != nil && err != nil { return errwrap.Wrapf(err, "input val type was inconsistent") } if t1 != nil { if err := typ.Cmp(t1.Val); err != nil { return errwrap.Wrapf(err, "input val type was inconsistent") } } isList := typ.Kind == types.KindList isMap := typ.Kind == types.KindMap if isMap && t2 != nil { t := &types.Type{ // build t1 Kind: types.KindMap, Key: t2, Val: typ, // t3 } if err := t.Cmp(t1); t1 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } t1 = t // learn! } t := &types.Type{ // build t1 (for lists) Kind: types.KindList, Val: typ, // t3 } if isList && t3 != nil { if err := t.Cmp(t1); t1 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } //t1 = t // learn! } // learn! if isList { t1 = t if t1 != nil && t3 != nil { t2 = types.TypeInt } } t3 = typ return nil } if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known? // this sets t1 and t3 on success (and sometimes t2) if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type // this sets t1 and t3 on success (and sometimes t2) if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first arg type is inconsistent") } } if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known? // this sets t2 (and sometimes t1) on success if it learned if err := validateArg1(typ); err != nil { return nil, errwrap.Wrapf(err, "second arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type // this sets t2 (and sometimes t1) on success if it learned if err := validateArg1(typ); err != nil { return nil, errwrap.Wrapf(err, "second arg type is inconsistent") } } if typ, err := cfavInvar.Args[2].Type(); err == nil { // is it known? // this sets t3 (and sometimes t1 (and sometimes t2)) on success if it learned if err := validateArg2(typ); err != nil { return nil, errwrap.Wrapf(err, "third default arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[2]]; exists { // alternate way to lookup type // this sets t3 (and sometimes t1 (and sometimes t2)) on success if it learned if err := validateArg2(typ); err != nil { return nil, errwrap.Wrapf(err, "third default arg type is inconsistent") } } // XXX: if the types aren't know statically? if t1 != nil { invar := &interfaces.EqualsInvariant{ Expr: dummyListOrMap, Type: t1, } invariants = append(invariants, invar) } if t2 != nil { invar := &interfaces.EqualsInvariant{ Expr: dummyIndexOrKey, Type: t2, } invariants = append(invariants, invar) } if t3 != nil { invar := &interfaces.EqualsInvariant{ Expr: dummyDefault, Type: t3, } invariants = append(invariants, invar) } // XXX: if t{1..2} are missing, we could also return a // new generator for later if we learn new information, // but we'd have to be careful to not do it infinitely. // TODO: do we return this relationship with ExprCall? invar = &interfaces.EqualityWrapCallInvariant{ // TODO: should Expr1 and Expr2 be reversed??? Expr1: cfavInvar.Expr, //Expr2Func: cfavInvar.Func, // same as below Expr2Func: expr, } invariants = append(invariants, invar) // TODO: are there any other invariants we should build? return invariants, nil // generator return } // We couldn't tell the solver anything it didn't already know! return nil, fmt.Errorf("couldn't generate new invariants") } invar = &interfaces.GeneratorInvariant{ Func: fn, } invariants = append(invariants, invar) return invariants, nil } // Build is run to turn the polymorphic, undetermined function, into the // specific statically typed version. It is usually run after Unify completes, // and must be run before Info() and any of the other Func interface methods are // used. This function is idempotent, as long as the arg isn't changed between // runs. func (obj *LookupDefaultFunc) Build(typ *types.Type) (*types.Type, error) { // typ is the KindFunc signature we're trying to build... if typ.Kind != types.KindFunc { return nil, fmt.Errorf("input type must be of kind func") } if len(typ.Ord) < 1 { return nil, fmt.Errorf("the lookup function needs at least one arg") // actually 2 or 3 } tListOrMap, exists := typ.Map[typ.Ord[0]] if !exists || tListOrMap == nil { return nil, fmt.Errorf("first arg must be specified") } if tListOrMap == nil { return nil, fmt.Errorf("first arg must have a type") } if tListOrMap.Kind == types.KindList { obj.fn = &ListLookupDefaultFunc{} // set it return obj.fn.Build(typ) } if tListOrMap.Kind == types.KindMap { obj.fn = &MapLookupDefaultFunc{} // set it return obj.fn.Build(typ) } return nil, fmt.Errorf("we must lookup from either a list or a map") } // Validate tells us if the input struct takes a valid form. func (obj *LookupDefaultFunc) Validate() error { if obj.fn == nil { // build must be run first return fmt.Errorf("type is still unspecified") } return obj.fn.Validate() } // Info returns some static info about itself. Build must be called before this // will return correct data. func (obj *LookupDefaultFunc) Info() *interfaces.Info { if obj.fn == nil { return &interfaces.Info{ Pure: true, Memo: false, Sig: nil, // func kind Err: obj.Validate(), } } return obj.fn.Info() } // Init runs some startup code for this function. func (obj *LookupDefaultFunc) Init(init *interfaces.Init) error { if obj.fn == nil { return fmt.Errorf("function not built correctly") } //obj.init = init return obj.fn.Init(init) } // Stream returns the changing values that this func has over time. func (obj *LookupDefaultFunc) Stream(ctx context.Context) error { if obj.fn == nil { return fmt.Errorf("function not built correctly") } return obj.fn.Stream(ctx) }