// Mgmt // Copyright (C) 2013-2024+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . package funcs import ( "context" "fmt" "math" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // ListLookupDefaultFuncName is the name this function is registered as. ListLookupDefaultFuncName = "list_lookup_default" // arg names... listLookupDefaultArgNameList = "list" listLookupDefaultArgNameIndex = "index" listLookupDefaultArgNameDefault = "default" ) func init() { Register(ListLookupDefaultFuncName, func() interfaces.Func { return &ListLookupDefaultFunc{} }) // must register the func and name } var _ interfaces.PolyFunc = &ListLookupDefaultFunc{} // ensure it meets this expectation // ListLookupDefaultFunc is a list index lookup function. If you provide a // negative index, then it will return the default value you specified for this // function. type ListLookupDefaultFunc struct { Type *types.Type // Kind == List, that is used as the list we lookup in init *interfaces.Init last types.Value // last value received to use for diff result types.Value // last calculated output } // String returns a simple name for this function. This is needed so this struct // can satisfy the pgraph.Vertex interface. func (obj *ListLookupDefaultFunc) String() string { return ListLookupDefaultFuncName } // ArgGen returns the Nth arg name for this function. func (obj *ListLookupDefaultFunc) ArgGen(index int) (string, error) { seq := []string{listLookupDefaultArgNameList, listLookupDefaultArgNameIndex, listLookupDefaultArgNameDefault} if l := len(seq); index >= l { return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) } return seq[index], nil } // Unify returns the list of invariants that this func produces. func (obj *ListLookupDefaultFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) { var invariants []interfaces.Invariant var invar interfaces.Invariant // func(list T1, index int, default T3) T3 // (list: []T3 => T3 aka T1 => T3) listName, err := obj.ArgGen(0) if err != nil { return nil, err } indexName, err := obj.ArgGen(1) if err != nil { return nil, err } defaultName, err := obj.ArgGen(2) if err != nil { return nil, err } dummyList := &interfaces.ExprAny{} // corresponds to the list type dummyIndex := &interfaces.ExprAny{} // corresponds to the index type dummyDefault := &interfaces.ExprAny{} // corresponds to the default type dummyOut := &interfaces.ExprAny{} // corresponds to the out string // default type and out are the same invar = &interfaces.EqualityInvariant{ Expr1: dummyDefault, Expr2: dummyOut, } invariants = append(invariants, invar) // relationship between T1 and T3 invar = &interfaces.EqualityWrapListInvariant{ Expr1: dummyList, Expr2Val: dummyDefault, } invariants = append(invariants, invar) // the index has to be an int invar = &interfaces.EqualsInvariant{ Expr: dummyIndex, Type: types.TypeInt, } invariants = append(invariants, invar) // full function mapped := make(map[string]interfaces.Expr) ordered := []string{listName, indexName, defaultName} mapped[listName] = dummyList mapped[indexName] = dummyIndex mapped[defaultName] = dummyDefault invar = &interfaces.EqualityWrapFuncInvariant{ Expr1: expr, // maps directly to us! Expr2Map: mapped, Expr2Ord: ordered, Expr2Out: dummyOut, } invariants = append(invariants, invar) // generator function fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) { for _, invariant := range fnInvariants { // search for this special type of invariant cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant) if !ok { continue } // did we find the mapping from us to ExprCall ? if cfavInvar.Func != expr { continue } // cfavInvar.Expr is the ExprCall! (the return pointer) // cfavInvar.Args are the args that ExprCall uses! if l := len(cfavInvar.Args); l != 3 { return nil, fmt.Errorf("unable to build function with %d args", l) } var invariants []interfaces.Invariant var invar interfaces.Invariant // add the relationship to the returned value invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Expr, Expr2: dummyOut, } invariants = append(invariants, invar) // add the relationships to the called args invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[0], Expr2: dummyList, } invariants = append(invariants, invar) invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[1], Expr2: dummyIndex, } invariants = append(invariants, invar) invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[2], Expr2: dummyDefault, } invariants = append(invariants, invar) // If we figure out either of these types, we'll know // the full type... var t1 *types.Type // list type var t3 *types.Type // list val type // validateArg0 checks: list T1 validateArg0 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } // we happen to have a list! if k := typ.Kind; k != types.KindList { return fmt.Errorf("unable to build function with 0th arg of kind: %s", k) } if typ.Val == nil { // programming error return fmt.Errorf("list is missing type") } if err := typ.Cmp(t1); t1 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } if err := typ.Val.Cmp(t3); t3 != nil && err != nil { return errwrap.Wrapf(err, "input val type was inconsistent") } // learn! t1 = typ t3 = typ.Val return nil } // validateArg1 checks: list index validateArg1 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } if typ.Kind != types.KindInt { return errwrap.Wrapf(err, "input index type was inconsistent") } return nil } // validateArg2 checks: list val T3 validateArg2 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } if err := typ.Cmp(t3); t3 != nil && err != nil { return errwrap.Wrapf(err, "input val type was inconsistent") } if t1 != nil { if err := typ.Cmp(t1.Val); err != nil { return errwrap.Wrapf(err, "input val type was inconsistent") } } t := &types.Type{ // build t1 Kind: types.KindList, Val: typ, // t3 } if t3 != nil { if err := t.Cmp(t1); t1 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } //t1 = t // learn! } // learn! t1 = t t3 = typ return nil } if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known? // this sets t1 and t3 on success if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first list arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type // this sets t1 and t3 on success if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first list arg type is inconsistent") } } if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known? // this only checks if this is an int if err := validateArg1(typ); err != nil { return nil, errwrap.Wrapf(err, "second index arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type // this only checks if this is an int if err := validateArg1(typ); err != nil { return nil, errwrap.Wrapf(err, "second index arg type is inconsistent") } } if typ, err := cfavInvar.Args[2].Type(); err == nil { // is it known? // this sets t1 and t3 on success if it learned if err := validateArg2(typ); err != nil { return nil, errwrap.Wrapf(err, "third default arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[2]]; exists { // alternate way to lookup type // this sets t1 and t3 on success if it learned if err := validateArg2(typ); err != nil { return nil, errwrap.Wrapf(err, "third default arg type is inconsistent") } } // XXX: if the types aren't know statically? if t1 != nil { invar := &interfaces.EqualsInvariant{ Expr: dummyList, Type: t1, } invariants = append(invariants, invar) } if t3 != nil { invar := &interfaces.EqualsInvariant{ Expr: dummyDefault, Type: t3, } invariants = append(invariants, invar) } // XXX: if t{1..2} are missing, we could also return a // new generator for later if we learn new information, // but we'd have to be careful to not do it infinitely. // TODO: do we return this relationship with ExprCall? invar = &interfaces.EqualityWrapCallInvariant{ // TODO: should Expr1 and Expr2 be reversed??? Expr1: cfavInvar.Expr, //Expr2Func: cfavInvar.Func, // same as below Expr2Func: expr, } invariants = append(invariants, invar) // TODO: are there any other invariants we should build? return invariants, nil // generator return } // We couldn't tell the solver anything it didn't already know! return nil, fmt.Errorf("couldn't generate new invariants") } invar = &interfaces.GeneratorInvariant{ Func: fn, } invariants = append(invariants, invar) return invariants, nil } // Build is run to turn the polymorphic, undetermined function, into the // specific statically typed version. It is usually run after Unify completes, // and must be run before Info() and any of the other Func interface methods are // used. This function is idempotent, as long as the arg isn't changed between // runs. func (obj *ListLookupDefaultFunc) Build(typ *types.Type) (*types.Type, error) { // typ is the KindFunc signature we're trying to build... if typ.Kind != types.KindFunc { return nil, fmt.Errorf("input type must be of kind func") } if len(typ.Ord) != 3 { return nil, fmt.Errorf("the listlookup function needs exactly three args") } if typ.Out == nil { return nil, fmt.Errorf("return type of function must be specified") } if typ.Map == nil { return nil, fmt.Errorf("invalid input type") } tList, exists := typ.Map[typ.Ord[0]] if !exists || tList == nil { return nil, fmt.Errorf("first arg must be specified") } tIndex, exists := typ.Map[typ.Ord[1]] if !exists || tIndex == nil { return nil, fmt.Errorf("second arg must be specified") } tDefault, exists := typ.Map[typ.Ord[2]] if !exists || tDefault == nil { return nil, fmt.Errorf("third arg must be specified") } if tIndex != nil && tIndex.Kind != types.KindInt { return nil, fmt.Errorf("index must be int kind") } if err := tList.Val.Cmp(tDefault); err != nil { return nil, errwrap.Wrapf(err, "default must match list val type") } if err := tList.Val.Cmp(typ.Out); err != nil { return nil, errwrap.Wrapf(err, "return type must match list val type") } obj.Type = tList // list type return obj.sig(), nil } // Validate tells us if the input struct takes a valid form. func (obj *ListLookupDefaultFunc) Validate() error { if obj.Type == nil { // build must be run first return fmt.Errorf("type is still unspecified") } if obj.Type.Kind != types.KindList { return fmt.Errorf("type must be a kind of list") } return nil } // Info returns some static info about itself. Build must be called before this // will return correct data. func (obj *ListLookupDefaultFunc) Info() *interfaces.Info { var sig *types.Type if obj.Type != nil { // don't panic if called speculatively // TODO: can obj.Type.Key or obj.Type.Val be nil (a partial) ? sig = obj.sig() // helper } return &interfaces.Info{ Pure: true, Memo: false, Sig: sig, // func kind Err: obj.Validate(), } } // helper func (obj *ListLookupDefaultFunc) sig() *types.Type { v := obj.Type.Val.String() return types.NewType(fmt.Sprintf("func(%s %s, %s int, %s %s) %s", listLookupDefaultArgNameList, obj.Type.String(), listLookupDefaultArgNameIndex, listLookupDefaultArgNameDefault, v, v)) } // Init runs some startup code for this function. func (obj *ListLookupDefaultFunc) Init(init *interfaces.Init) error { obj.init = init return nil } // Stream returns the changing values that this func has over time. func (obj *ListLookupDefaultFunc) Stream(ctx context.Context) error { defer close(obj.init.Output) // the sender closes for { select { case input, ok := <-obj.init.Input: if !ok { return nil // can't output any more } //if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil { // return errwrap.Wrapf(err, "wrong function input") //} if obj.last != nil && input.Cmp(obj.last) == nil { continue // value didn't change, skip it } obj.last = input // store for next l := (input.Struct()[listLookupDefaultArgNameList]).(*types.ListValue) index := input.Struct()[listLookupDefaultArgNameIndex].Int() def := input.Struct()[listLookupDefaultArgNameDefault] // TODO: should we handle overflow by returning default? if index > math.MaxInt { // max int size varies by arch return fmt.Errorf("list index overflow, got: %d, max is: %d", index, math.MaxInt32) } // negative index values are "not found" here! var result types.Value val, exists := l.Lookup(int(index)) if exists { result = val } else { result = def } // if previous input was `2 + 4`, but now it // changed to `1 + 5`, the result is still the // same, so we can skip sending an update... if obj.result != nil && result.Cmp(obj.result) == nil { continue // result didn't change } obj.result = result // store new result case <-ctx.Done(): return nil } select { case obj.init.Output <- obj.result: // send case <-ctx.Done(): return nil } } }