// Mgmt // Copyright (C) 2013-2024+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . package funcs import ( "context" "fmt" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // MapLookupFuncName is the name this function is registered as. MapLookupFuncName = "map_lookup" // arg names... mapLookupArgNameMap = "map" mapLookupArgNameKey = "key" ) func init() { Register(MapLookupFuncName, func() interfaces.Func { return &MapLookupFunc{} }) // must register the func and name } var _ interfaces.PolyFunc = &MapLookupFunc{} // ensure it meets this expectation // MapLookupFunc is a key map lookup function. If you provide a missing key, // then it will return the zero value for that type. type MapLookupFunc struct { Type *types.Type // Kind == Map, that is used as the map we lookup init *interfaces.Init last types.Value // last value received to use for diff result types.Value // last calculated output } // String returns a simple name for this function. This is needed so this struct // can satisfy the pgraph.Vertex interface. func (obj *MapLookupFunc) String() string { return MapLookupFuncName } // ArgGen returns the Nth arg name for this function. func (obj *MapLookupFunc) ArgGen(index int) (string, error) { seq := []string{mapLookupArgNameMap, mapLookupArgNameKey} if l := len(seq); index >= l { return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) } return seq[index], nil } // Unify returns the list of invariants that this func produces. func (obj *MapLookupFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) { var invariants []interfaces.Invariant var invar interfaces.Invariant // func(map T1, key T2) T3 // (map: T2 => T3) mapName, err := obj.ArgGen(0) if err != nil { return nil, err } keyName, err := obj.ArgGen(1) if err != nil { return nil, err } dummyMap := &interfaces.ExprAny{} // corresponds to the map type dummyKey := &interfaces.ExprAny{} // corresponds to the key type dummyOut := &interfaces.ExprAny{} // corresponds to the out string // relationship between T1, T2 and T3 invar = &interfaces.EqualityWrapMapInvariant{ Expr1: dummyMap, Expr2Key: dummyKey, Expr2Val: dummyOut, } invariants = append(invariants, invar) // full function mapped := make(map[string]interfaces.Expr) ordered := []string{mapName, keyName} mapped[mapName] = dummyMap mapped[keyName] = dummyKey invar = &interfaces.EqualityWrapFuncInvariant{ Expr1: expr, // maps directly to us! Expr2Map: mapped, Expr2Ord: ordered, Expr2Out: dummyOut, } invariants = append(invariants, invar) // generator function fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) { for _, invariant := range fnInvariants { // search for this special type of invariant cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant) if !ok { continue } // did we find the mapping from us to ExprCall ? if cfavInvar.Func != expr { continue } // cfavInvar.Expr is the ExprCall! (the return pointer) // cfavInvar.Args are the args that ExprCall uses! if l := len(cfavInvar.Args); l != 2 { return nil, fmt.Errorf("unable to build function with %d args", l) } var invariants []interfaces.Invariant var invar interfaces.Invariant // add the relationship to the returned value invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Expr, Expr2: dummyOut, } invariants = append(invariants, invar) // add the relationships to the called args invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[0], Expr2: dummyMap, } invariants = append(invariants, invar) invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[1], Expr2: dummyKey, } invariants = append(invariants, invar) // If we figure out all of these three types, we'll // know the full type... var t1 *types.Type // map type var t2 *types.Type // map key type var t3 *types.Type // map val type // validateArg0 checks: map T1 validateArg0 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } // we happen to have a map! if k := typ.Kind; k != types.KindMap { return fmt.Errorf("unable to build function with 0th arg of kind: %s", k) } if typ.Key == nil || typ.Val == nil { // programming error return fmt.Errorf("map is missing type") } if err := typ.Cmp(t1); t1 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } if err := typ.Key.Cmp(t2); t2 != nil && err != nil { return errwrap.Wrapf(err, "input key type was inconsistent") } if err := typ.Val.Cmp(t3); t3 != nil && err != nil { return errwrap.Wrapf(err, "input val type was inconsistent") } // learn! t1 = typ t2 = typ.Key t3 = typ.Val return nil } // validateArg1 checks: map key T2 validateArg1 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } if err := typ.Cmp(t2); t2 != nil && err != nil { return errwrap.Wrapf(err, "input key type was inconsistent") } if t1 != nil { if err := typ.Cmp(t1.Key); err != nil { return errwrap.Wrapf(err, "input key type was inconsistent") } } if t3 != nil { t := &types.Type{ // build t1 Kind: types.KindMap, Key: typ, // t2 Val: t3, } if err := t.Cmp(t1); t1 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } t1 = t // learn! } // learn! t2 = typ return nil } if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known? // this sets t1 and t2 and t3 on success if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first map arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type // this sets t1 and t2 and t3 on success if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first map arg type is inconsistent") } } if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known? // this sets t2 (and sometimes t1) on success if it learned if err := validateArg1(typ); err != nil { return nil, errwrap.Wrapf(err, "second key arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type // this sets t2 (and sometimes t1) on success if it learned if err := validateArg1(typ); err != nil { return nil, errwrap.Wrapf(err, "second key arg type is inconsistent") } } // XXX: if the types aren't know statically? if t1 != nil { invar := &interfaces.EqualsInvariant{ Expr: dummyMap, Type: t1, } invariants = append(invariants, invar) } if t2 != nil { invar := &interfaces.EqualsInvariant{ Expr: dummyKey, Type: t2, } invariants = append(invariants, invar) } if t3 != nil { invar := &interfaces.EqualsInvariant{ Expr: dummyOut, Type: t3, } invariants = append(invariants, invar) } // XXX: if t{1..3} are missing, we could also return a // new generator for later if we learn new information, // but we'd have to be careful to not do it infinitely. // TODO: do we return this relationship with ExprCall? invar = &interfaces.EqualityWrapCallInvariant{ // TODO: should Expr1 and Expr2 be reversed??? Expr1: cfavInvar.Expr, //Expr2Func: cfavInvar.Func, // same as below Expr2Func: expr, } invariants = append(invariants, invar) // TODO: are there any other invariants we should build? return invariants, nil // generator return } // We couldn't tell the solver anything it didn't already know! return nil, fmt.Errorf("couldn't generate new invariants") } invar = &interfaces.GeneratorInvariant{ Func: fn, } invariants = append(invariants, invar) return invariants, nil } // Build is run to turn the polymorphic, undetermined function, into the // specific statically typed version. It is usually run after Unify completes, // and must be run before Info() and any of the other Func interface methods are // used. This function is idempotent, as long as the arg isn't changed between // runs. func (obj *MapLookupFunc) Build(typ *types.Type) (*types.Type, error) { // typ is the KindFunc signature we're trying to build... if typ.Kind != types.KindFunc { return nil, fmt.Errorf("input type must be of kind func") } if len(typ.Ord) != 2 { return nil, fmt.Errorf("the maplookup function needs exactly three args") } if typ.Out == nil { return nil, fmt.Errorf("return type of function must be specified") } if typ.Map == nil { return nil, fmt.Errorf("invalid input type") } tMap, exists := typ.Map[typ.Ord[0]] if !exists || tMap == nil { return nil, fmt.Errorf("first arg must be specified") } tKey, exists := typ.Map[typ.Ord[1]] if !exists || tKey == nil { return nil, fmt.Errorf("second arg must be specified") } if err := tMap.Key.Cmp(tKey); err != nil { return nil, errwrap.Wrapf(err, "key must match map key type") } if err := tMap.Val.Cmp(typ.Out); err != nil { return nil, errwrap.Wrapf(err, "return type must match map val type") } obj.Type = tMap // map type return obj.sig(), nil } // Validate tells us if the input struct takes a valid form. func (obj *MapLookupFunc) Validate() error { if obj.Type == nil { // build must be run first return fmt.Errorf("type is still unspecified") } if obj.Type.Kind != types.KindMap { return fmt.Errorf("type must be a kind of map") } return nil } // Info returns some static info about itself. Build must be called before this // will return correct data. func (obj *MapLookupFunc) Info() *interfaces.Info { var sig *types.Type if obj.Type != nil { // don't panic if called speculatively // TODO: can obj.Type.Key or obj.Type.Val be nil (a partial) ? sig = obj.sig() // helper } return &interfaces.Info{ Pure: true, Memo: false, Sig: sig, // func kind Err: obj.Validate(), } } // helper func (obj *MapLookupFunc) sig() *types.Type { k := obj.Type.Key.String() v := obj.Type.Val.String() return types.NewType(fmt.Sprintf("func(%s %s, %s %s) %s", mapLookupArgNameMap, obj.Type.String(), mapLookupArgNameKey, k, v)) } // Init runs some startup code for this function. func (obj *MapLookupFunc) Init(init *interfaces.Init) error { obj.init = init return nil } // Stream returns the changing values that this func has over time. func (obj *MapLookupFunc) Stream(ctx context.Context) error { defer close(obj.init.Output) // the sender closes for { select { case input, ok := <-obj.init.Input: if !ok { return nil // can't output any more } //if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil { // return errwrap.Wrapf(err, "wrong function input") //} if obj.last != nil && input.Cmp(obj.last) == nil { continue // value didn't change, skip it } obj.last = input // store for next m := (input.Struct()[mapLookupArgNameMap]).(*types.MapValue) key := input.Struct()[mapLookupArgNameKey] zero := m.Type().New() // the zero value var result types.Value val, exists := m.Lookup(key) if exists { result = val } else { result = zero } // if previous input was `2 + 4`, but now it // changed to `1 + 5`, the result is still the // same, so we can skip sending an update... if obj.result != nil && result.Cmp(obj.result) == nil { continue // result didn't change } obj.result = result // store new result case <-ctx.Done(): return nil } select { case obj.init.Output <- obj.result: // send case <-ctx.Done(): return nil } } }