// Mgmt // Copyright (C) 2013-2024+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Additional permission under GNU GPL version 3 section 7 // // If you modify this program, or any covered work, by linking or combining it // with embedded mcl code and modules (and that the embedded mcl code and // modules which link with this program, contain a copy of their source code in // the authoritative form) containing parts covered by the terms of any other // license, the licensors of this program grant you additional permission to // convey the resulting work. Furthermore, the licensors of this program grant // the original author, James Shubin, additional permission to update this // additional permission if he deems it necessary to achieve the goals of this // additional permission. package unification import ( "context" "fmt" "sort" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" ) const ( // ErrAmbiguous means we couldn't find a solution, but we weren't // inconsistent. ErrAmbiguous = interfaces.Error("can't unify, no equalities were consumed, we're ambiguous") // StrategyNameKey is the string key used when choosing a solver name. StrategyNameKey = "name" // StrategyOptimizationsKey is the string key used to tell the solver // about the specific optimizations you'd like to request. The format // can be specific to each solver. StrategyOptimizationsKey = "optimizations" ) // Init contains some handles that are used to initialize every solver. Each // individual solver can choose to omit using some of the fields. type Init struct { // Strategy is a hack to tune unification performance until we have an // overall cleaner unification algorithm in place. Strategy map[string]string Debug bool Logf func(format string, v ...interface{}) } // Solver is the general interface that any solver needs to implement. type Solver interface { // Init initializes the solver struct before first use. Init(*Init) error // Solve performs the actual solving. It must return as soon as possible // if the context is closed. Solve(ctx context.Context, invariants []interfaces.Invariant, expected []interfaces.Expr) (*InvariantSolution, error) } // registeredSolvers is a global map of all possible unification solvers which // can be used. You should never touch this map directly. Use methods like // Register instead. var registeredSolvers = make(map[string]func() Solver) // must initialize // Register takes a solver and its name and makes it available for use. It is // commonly called in the init() method of the solver at program startup. There // is no matching Unregister function. func Register(name string, solver func() Solver) { if _, exists := registeredSolvers[name]; exists { panic(fmt.Sprintf("a solver named %s is already registered", name)) } //gob.Register(solver()) registeredSolvers[name] = solver } // Lookup returns a pointer to the solver's struct. func Lookup(name string) (Solver, error) { solver, exists := registeredSolvers[name] if !exists { return nil, fmt.Errorf("not found") } return solver(), nil } // LookupDefault attempts to return a "default" solver. func LookupDefault() (Solver, error) { if len(registeredSolvers) == 0 { return nil, fmt.Errorf("no registered solvers") } if len(registeredSolvers) == 1 { for _, solver := range registeredSolvers { return solver(), nil // return the first and only one } } // TODO: Should we remove this empty string feature? // If one was registered with no name, then use that as the default. if solver, exists := registeredSolvers[""]; exists { // empty name return solver(), nil } return nil, fmt.Errorf("no registered default solver") } // DebugSolverState helps us in understanding the state of the type unification // solver in a more mainstream format. // Example: // // solver state: // // * str("foo") :: str // * call:f(str("foo")) [0xc000ac9f10] :: ?1 // * var(x) [0xc00088d840] :: ?2 // * param(x) [0xc00000f950] :: ?3 // * func(x) { var(x) } [0xc0000e9680] :: ?4 // * ?2 = ?3 // * ?4 = func(arg0 str) ?1 // * ?4 = func(x str) ?2 // * ?1 = ?2 func DebugSolverState(solved map[interfaces.Expr]*types.Type, equalities []interfaces.Invariant) string { s := "" // all the relevant Exprs count := 0 exprs := make(map[interfaces.Expr]int) for _, equality := range equalities { for _, expr := range equality.ExprList() { count++ exprs[expr] = count // for sorting } } // print the solved Exprs first for expr, typ := range solved { s += fmt.Sprintf("%v :: %v\n", expr, typ) delete(exprs, expr) } sortedExprs := []interfaces.Expr{} for k := range exprs { sortedExprs = append(sortedExprs, k) } sort.Slice(sortedExprs, func(i, j int) bool { return exprs[sortedExprs[i]] < exprs[sortedExprs[j]] }) // for each remaining expr, generate a shorter name than the full pointer nextVar := 1 shortNames := map[interfaces.Expr]string{} for _, expr := range sortedExprs { shortNames[expr] = fmt.Sprintf("?%d", nextVar) nextVar++ s += fmt.Sprintf("%p %v :: %s\n", expr, expr, shortNames[expr]) } // print all the equalities using the short names for _, equality := range equalities { switch e := equality.(type) { case *interfaces.EqualsInvariant: _, ok := solved[e.Expr] if !ok { s += fmt.Sprintf("%s = %v\n", shortNames[e.Expr], e.Type) } else { // if solved, then this is redundant, don't print anything } case *interfaces.EqualityInvariant: type1, ok1 := solved[e.Expr1] type2, ok2 := solved[e.Expr2] if !ok1 && !ok2 { s += fmt.Sprintf("%s = %s\n", shortNames[e.Expr1], shortNames[e.Expr2]) } else if ok1 && !ok2 { s += fmt.Sprintf("%s = %s\n", type1, shortNames[e.Expr2]) } else if !ok1 && ok2 { s += fmt.Sprintf("%s = %s\n", shortNames[e.Expr1], type2) } else { // if completely solved, then this is redundant, don't print anything } case *interfaces.EqualityWrapFuncInvariant: funcType, funcOk := solved[e.Expr1] args := "" argsOk := true for i, argName := range e.Expr2Ord { if i > 0 { args += ", " } argExpr := e.Expr2Map[argName] argType, ok := solved[argExpr] if !ok { args += fmt.Sprintf("%s %s", argName, shortNames[argExpr]) argsOk = false } else { args += fmt.Sprintf("%s %s", argName, argType) } } outType, outOk := solved[e.Expr2Out] if !funcOk || !argsOk || !outOk { if !funcOk && !outOk { s += fmt.Sprintf("%s = func(%s) %s\n", shortNames[e.Expr1], args, shortNames[e.Expr2Out]) } else if !funcOk && outOk { s += fmt.Sprintf("%s = func(%s) %s\n", shortNames[e.Expr1], args, outType) } else if funcOk && !outOk { s += fmt.Sprintf("%s = func(%s) %s\n", funcType, args, shortNames[e.Expr2Out]) } else { s += fmt.Sprintf("%s = func(%s) %s\n", funcType, args, outType) } } case *interfaces.CallFuncArgsValueInvariant: // skip, not used in the examples I care about case *interfaces.AnyInvariant: // skip, not used in the examples I care about case *interfaces.SkipInvariant: // we don't care about this one default: s += fmt.Sprintf("%v\n", equality) } } return s }