// Mgmt // Copyright (C) 2013-2023+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . package funcs import ( "fmt" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // StructLookupFuncName is the name this function is registered as. This // starts with an underscore so that it cannot be used from the lexer. // XXX: change to _structlookup and add syntax in the lexer/parser StructLookupFuncName = "structlookup" // arg names... structLookupArgNameStruct = "struct" structLookupArgNameField = "field" ) func init() { Register(StructLookupFuncName, func() interfaces.Func { return &StructLookupPolyFunc{} }) // must register the func and name } // StructLookupPolyFunc is a key map lookup function. type StructLookupPolyFunc struct { Type *types.Type // Kind == Struct, that is used as the struct we lookup Out *types.Type // type of field we're extracting init *interfaces.Init last types.Value // last value received to use for diff field string result types.Value // last calculated output closeChan chan struct{} } // String returns a simple name for this function. This is needed so this struct // can satisfy the pgraph.Vertex interface. func (obj *StructLookupPolyFunc) String() string { return StructLookupFuncName } // ArgGen returns the Nth arg name for this function. func (obj *StructLookupPolyFunc) ArgGen(index int) (string, error) { seq := []string{structLookupArgNameStruct, structLookupArgNameField} if l := len(seq); index >= l { return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) } return seq[index], nil } // Unify returns the list of invariants that this func produces. func (obj *StructLookupPolyFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) { var invariants []interfaces.Invariant var invar interfaces.Invariant // func(struct T1, field str) T2 structName, err := obj.ArgGen(0) if err != nil { return nil, err } fieldName, err := obj.ArgGen(1) if err != nil { return nil, err } dummyStruct := &interfaces.ExprAny{} // corresponds to the struct type dummyField := &interfaces.ExprAny{} // corresponds to the field type dummyOut := &interfaces.ExprAny{} // corresponds to the out string // field arg type of string invar = &interfaces.EqualsInvariant{ Expr: dummyField, Type: types.TypeStr, } invariants = append(invariants, invar) // XXX: we could use this relationship *if* our solver could understand // different fields, and partial struct matches. I guess we'll leave it // for another day! //mapped := make(map[string]interfaces.Expr) //ordered := []string{???} //mapped[???] = dummyField //invar = &interfaces.EqualityWrapStructInvariant{ // Expr1: dummyStruct, // Expr2Map: mapped, // Expr2Ord: ordered, //} //invariants = append(invariants, invar) // full function mapped := make(map[string]interfaces.Expr) ordered := []string{structName, fieldName} mapped[structName] = dummyStruct mapped[fieldName] = dummyField invar = &interfaces.EqualityWrapFuncInvariant{ Expr1: expr, // maps directly to us! Expr2Map: mapped, Expr2Ord: ordered, Expr2Out: dummyOut, } invariants = append(invariants, invar) // generator function fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) { for _, invariant := range fnInvariants { // search for this special type of invariant cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant) if !ok { continue } // did we find the mapping from us to ExprCall ? if cfavInvar.Func != expr { continue } // cfavInvar.Expr is the ExprCall! (the return pointer) // cfavInvar.Args are the args that ExprCall uses! if l := len(cfavInvar.Args); l != 2 { return nil, fmt.Errorf("unable to build function with %d args", l) } // add the relationship to the returned value invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Expr, Expr2: dummyOut, } invariants = append(invariants, invar) // add the relationships to the called args invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[0], Expr2: dummyStruct, } invariants = append(invariants, invar) invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[1], Expr2: dummyField, } invariants = append(invariants, invar) var invariants []interfaces.Invariant var invar interfaces.Invariant // second arg must be a string invar = &interfaces.EqualsInvariant{ Expr: cfavInvar.Args[1], Type: types.TypeStr, } invariants = append(invariants, invar) value, err := cfavInvar.Args[1].Value() // is it known? if err != nil { return nil, fmt.Errorf("field string is not known statically") } if k := value.Type().Kind; k != types.KindStr { return nil, fmt.Errorf("unable to build function with 1st arg of kind: %s", k) } field := value.Str() // must not panic // If we figure out both of these two types, we'll know // the full type... var t1 *types.Type // struct type var t2 *types.Type // return type // validateArg0 checks: struct T1 validateArg0 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } // we happen to have a struct! if k := typ.Kind; k != types.KindStruct { return fmt.Errorf("unable to build function with 0th arg of kind: %s", k) } // check both Ord and Map for safety found := false for _, s := range typ.Ord { if s == field { found = true break } } t, exists := typ.Map[field] // type found is T2 if !exists || !found { return fmt.Errorf("struct is missing field: %s", field) } if err := typ.Cmp(t1); t1 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } if err := t.Cmp(t2); t2 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } // learn! t1 = typ t2 = t return nil } if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known? // this sets t1 and t2 on success if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type // this sets t1 and t2 on success if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent") } } // XXX: if the struct type/value isn't know statically? if t1 != nil { invar = &interfaces.EqualsInvariant{ Expr: dummyStruct, Type: t1, } invariants = append(invariants, invar) // We know *some* information about the struct! // Let's hope the unusedField expr won't trip // up the solver... mapped := make(map[string]interfaces.Expr) ordered := []string{} for _, x := range t1.Ord { // We *don't* need to solve unusedField unusedField := &interfaces.ExprAny{} mapped[x] = unusedField if x == field { // the one we care about mapped[x] = dummyOut } ordered = append(ordered, x) } // We map to dummyOut which is the return type // and has the same type of the field we want! mapped[field] = dummyOut // redundant =D invar = &interfaces.EqualityWrapStructInvariant{ Expr1: dummyStruct, Expr2Map: mapped, Expr2Ord: ordered, } invariants = append(invariants, invar) } if t2 != nil { invar := &interfaces.EqualsInvariant{ Expr: dummyOut, Type: t2, } invariants = append(invariants, invar) } // XXX: if t1 or t2 are missing, we could also return a // new generator for later if we learn new information, // but we'd have to be careful to not do the infinitely // TODO: do we return this relationship with ExprCall? invar = &interfaces.EqualityWrapCallInvariant{ // TODO: should Expr1 and Expr2 be reversed??? Expr1: cfavInvar.Expr, //Expr2Func: cfavInvar.Func, // same as below Expr2Func: expr, } invariants = append(invariants, invar) // TODO: are there any other invariants we should build? return invariants, nil // generator return } // We couldn't tell the solver anything it didn't already know! return nil, fmt.Errorf("couldn't generate new invariants") } invar = &interfaces.GeneratorInvariant{ Func: fn, } invariants = append(invariants, invar) return invariants, nil } // Polymorphisms returns the list of possible function signatures available for // this static polymorphic function. It relies on type and value hints to limit // the number of returned possibilities. func (obj *StructLookupPolyFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) { // TODO: return `variant` as arg for now -- maybe there's a better way? variant := []*types.Type{types.NewType("func(struct variant, field str) variant")} if partialType == nil { return variant, nil } var typ *types.Type // struct type of the first argument var out *types.Type // type of the field // TODO: if partialValue[0] exists, check it matches the type we expect ord := partialType.Ord if partialType.Map != nil { if len(ord) != 2 { return nil, fmt.Errorf("must have exactly two args in structlookup func") } if tStruct, exists := partialType.Map[ord[0]]; exists && tStruct != nil { if tStruct.Kind != types.KindStruct { return nil, fmt.Errorf("first arg for structlookup must be a struct") } if !tStruct.HasVariant() { typ = tStruct // found } } if tField, exists := partialType.Map[ord[1]]; exists && tField != nil { if tField.Cmp(types.TypeStr) != nil { return nil, fmt.Errorf("second arg for structlookup must be a string") } } if len(partialValues) == 2 && partialValues[1] != nil { if types.TypeStr.Cmp(partialValues[1].Type()) != nil { return nil, fmt.Errorf("second value must be an str") } structType, exists := partialType.Map[ord[0]] if !exists { return nil, fmt.Errorf("missing struct field") } if structType != nil { field := partialValues[1].Str() fieldType, exists := structType.Map[field] if !exists { return nil, fmt.Errorf("field: `%s` does not exist in struct", field) } if fieldType != nil { if partialType.Out != nil && fieldType.Cmp(partialType.Out) != nil { return nil, fmt.Errorf("field `%s` must have same type as return type", field) } out = fieldType // found! } } } if tOut := partialType.Out; tOut != nil { // TODO: we could check that at least one of the types // in struct.Map was our type, but not very useful... } } typFunc := &types.Type{ Kind: types.KindFunc, // function type Map: make(map[string]*types.Type), Ord: []string{structLookupArgNameStruct, structLookupArgNameField}, Out: out, } typFunc.Map[structLookupArgNameStruct] = typ typFunc.Map[structLookupArgNameField] = types.TypeStr // set variant instead of nil if typFunc.Map[structLookupArgNameStruct] == nil { typFunc.Map[structLookupArgNameStruct] = types.TypeVariant } if out == nil { typFunc.Out = types.TypeVariant } return []*types.Type{typFunc}, nil } // Build is run to turn the polymorphic, undetermined function, into the // specific statically typed version. It is usually run after Unify completes, // and must be run before Info() and any of the other Func interface methods are // used. This function is idempotent, as long as the arg isn't changed between // runs. func (obj *StructLookupPolyFunc) Build(typ *types.Type) error { // typ is the KindFunc signature we're trying to build... if typ.Kind != types.KindFunc { return fmt.Errorf("input type must be of kind func") } if len(typ.Ord) != 2 { return fmt.Errorf("the structlookup function needs exactly two args") } if typ.Out == nil { return fmt.Errorf("return type of function must be specified") } if typ.Map == nil { return fmt.Errorf("invalid input type") } tStruct, exists := typ.Map[typ.Ord[0]] if !exists || tStruct == nil { return fmt.Errorf("first arg must be specified") } tField, exists := typ.Map[typ.Ord[1]] if !exists || tField == nil { return fmt.Errorf("second arg must be specified") } if err := tField.Cmp(types.TypeStr); err != nil { return errwrap.Wrapf(err, "field must be an str") } // NOTE: We actually don't know which field this is, only its type! we // could have cached the discovered field during Polymorphisms(), but it // turns out it's not actually necessary for us to know it to build the // struct. obj.Type = tStruct // struct type obj.Out = typ.Out // type of return value return nil } // Validate tells us if the input struct takes a valid form. func (obj *StructLookupPolyFunc) Validate() error { if obj.Type == nil { // build must be run first return fmt.Errorf("type is still unspecified") } if obj.Type.Kind != types.KindStruct { return fmt.Errorf("type must be a kind of struct") } if obj.Out == nil { return fmt.Errorf("return type must be specified") } for _, t := range obj.Type.Map { if obj.Out.Cmp(t) == nil { return nil // found at least one match } } return fmt.Errorf("return type is not in the list of available struct fields") } // Info returns some static info about itself. Build must be called before this // will return correct data. func (obj *StructLookupPolyFunc) Info() *interfaces.Info { var sig *types.Type if obj.Type != nil { // don't panic if called speculatively // TODO: can obj.Out be nil (a partial) ? sig = types.NewType(fmt.Sprintf("func(struct %s, field str) %s", obj.Type.String(), obj.Out.String())) } return &interfaces.Info{ Pure: true, Memo: false, Sig: sig, // func kind Err: obj.Validate(), } } // Init runs some startup code for this function. func (obj *StructLookupPolyFunc) Init(init *interfaces.Init) error { obj.init = init obj.closeChan = make(chan struct{}) return nil } // Stream returns the changing values that this func has over time. func (obj *StructLookupPolyFunc) Stream() error { defer close(obj.init.Output) // the sender closes for { select { case input, ok := <-obj.init.Input: if !ok { return nil // can't output any more } //if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil { // return errwrap.Wrapf(err, "wrong function input") //} if obj.last != nil && input.Cmp(obj.last) == nil { continue // value didn't change, skip it } obj.last = input // store for next st := (input.Struct()[structLookupArgNameStruct]).(*types.StructValue) field := input.Struct()[structLookupArgNameField].Str() if field == "" { return fmt.Errorf("received empty field") } result, exists := st.Lookup(field) if !exists { return fmt.Errorf("could not lookup field: `%s` in struct", field) } if obj.field == "" { obj.field = field // store first field } if field != obj.field { return fmt.Errorf("input field changed from: `%s`, to: `%s`", obj.field, field) } // if previous input was `2 + 4`, but now it // changed to `1 + 5`, the result is still the // same, so we can skip sending an update... if obj.result != nil && result.Cmp(obj.result) == nil { continue // result didn't change } obj.result = result // store new result case <-obj.closeChan: return nil } select { case obj.init.Output <- obj.result: // send case <-obj.closeChan: return nil } } } // Close runs some shutdown code for this function and turns off the stream. func (obj *StructLookupPolyFunc) Close() error { close(obj.closeChan) return nil }