// Mgmt // Copyright (C) 2013-2023+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . package funcs import ( "fmt" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // ContainsFuncName is the name this function is registered as. This // starts with an underscore so that it cannot be used from the lexer. // XXX: change to _contains and add syntax in the lexer/parser ContainsFuncName = "contains" // arg names... containsArgNameNeedle = "needle" containsArgNameHaystack = "haystack" ) func init() { Register(ContainsFuncName, func() interfaces.Func { return &ContainsPolyFunc{} }) // must register the func and name } // ContainsPolyFunc returns true if a value is found in a list. Otherwise false. type ContainsPolyFunc struct { Type *types.Type // this is the type of value stored in our list init *interfaces.Init last types.Value // last value received to use for diff result types.Value // last calculated output closeChan chan struct{} } // String returns a simple name for this function. This is needed so this struct // can satisfy the pgraph.Vertex interface. func (obj *ContainsPolyFunc) String() string { return ContainsFuncName } // ArgGen returns the Nth arg name for this function. func (obj *ContainsPolyFunc) ArgGen(index int) (string, error) { seq := []string{containsArgNameNeedle, containsArgNameHaystack} if l := len(seq); index >= l { return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) } return seq[index], nil } // Unify returns the list of invariants that this func produces. func (obj *ContainsPolyFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) { var invariants []interfaces.Invariant var invar interfaces.Invariant // func(needle variant, haystack variant) bool // func(needle %s, haystack []%s) bool needleName, err := obj.ArgGen(0) if err != nil { return nil, err } haystackName, err := obj.ArgGen(1) if err != nil { return nil, err } dummyNeedle := &interfaces.ExprAny{} // corresponds to the needle type dummyHaystack := &interfaces.ExprAny{} // corresponds to the haystack type //dummyHaystackValue := &interfaces.ExprAny{} // corresponds to the haystack list type dummyOut := &interfaces.ExprAny{} // corresponds to the out boolean //invar = &unification.EqualityInvariant{ // Expr1: dummyNeedle, // Expr2: dummyHaystackValue, //} //invariants = append(invariants, invar) // list relationship between needle and haystack // TODO: did I get this equality backwards? invar = &interfaces.EqualityWrapListInvariant{ Expr1: dummyHaystack, Expr2Val: dummyNeedle, } invariants = append(invariants, invar) // full function mapped := make(map[string]interfaces.Expr) ordered := []string{needleName, haystackName} mapped[needleName] = dummyNeedle mapped[haystackName] = dummyHaystack invar = &interfaces.EqualityWrapFuncInvariant{ Expr1: expr, // maps directly to us! Expr2Map: mapped, Expr2Ord: ordered, Expr2Out: dummyOut, } invariants = append(invariants, invar) // return type of bool invar = &interfaces.EqualsInvariant{ Expr: dummyOut, Type: types.TypeBool, } invariants = append(invariants, invar) // generator function to link this to the right type fn := obj.fnBuilder(false, expr, dummyNeedle, dummyHaystack, dummyOut) invar = &interfaces.GeneratorInvariant{ Func: fn, } invariants = append(invariants, invar) return invariants, nil } // fnBuilder builds the function for the generator invariant. It is unique in // that it can recursively call itself to build a second generation generator // invariant. This can only happen once, because by then we'll have given all // the new information we can, and falsely producing redundant information is a // good way to stall the solver if it thinks it keeps learning more things! func (obj *ContainsPolyFunc) fnBuilder(recurse bool, expr, dummyNeedle, dummyHaystack, dummyOut interfaces.Expr) func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) { return func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) { for _, invariant := range fnInvariants { // search for this special type of invariant cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant) if !ok { continue } // did we find the mapping from us to ExprCall ? if cfavInvar.Func != expr { continue } // cfavInvar.Expr is the ExprCall! (the return pointer) // cfavInvar.Args are the args that ExprCall uses! if l := len(cfavInvar.Args); l != 2 { return nil, fmt.Errorf("unable to build function with %d args", l) } var invariants []interfaces.Invariant var invar interfaces.Invariant if !recurse { // only do this once! // add the relationship to the returned value invar = &interfaces.EqualityInvariant{ Expr1: dummyOut, Expr2: cfavInvar.Expr, } invariants = append(invariants, invar) // add the relationships to the called args invar = &interfaces.EqualityInvariant{ Expr1: dummyNeedle, Expr2: cfavInvar.Args[0], } invariants = append(invariants, invar) invar = &interfaces.EqualityInvariant{ Expr1: dummyHaystack, Expr2: cfavInvar.Args[1], } invariants = append(invariants, invar) // TODO: do we return this relationship with ExprCall? invar = &interfaces.EqualityWrapCallInvariant{ // TODO: should Expr1 and Expr2 be reversed??? Expr1: cfavInvar.Expr, //Expr2Func: cfavInvar.Func, // same as below Expr2Func: expr, } invariants = append(invariants, invar) } var needleTyp *types.Type // Instead of using cfavInvar.Args[*].Type() I think we // can probably rely on the solved to find this for us! if typ, exists := solved[cfavInvar.Args[1]]; exists { if k := typ.Kind; k == types.KindList { needleTyp = typ.Val // contained element type } } if typ, exists := solved[cfavInvar.Args[0]]; exists { if err := needleTyp.Cmp(typ); needleTyp != nil && err != nil { // inconsistent types! return nil, errwrap.Wrapf(err, "inconsistent type") } needleTyp = typ } // We only want to recurse once. if recurse && needleTyp == nil { // nothing new we can do return nil, fmt.Errorf("couldn't generate new invariants") } if needleTyp == nil { // recurse-- we build a new one! fn := obj.fnBuilder(true, expr, dummyNeedle, dummyHaystack, dummyOut) invar = &interfaces.GeneratorInvariant{ Func: fn, } invariants = append(invariants, invar) } invar = &interfaces.EqualsInvariant{ Expr: dummyNeedle, Type: needleTyp, } invariants = append(invariants, invar) return invariants, nil // generator return } // We couldn't tell the solver anything it didn't already know! return nil, fmt.Errorf("couldn't generate new invariants") } } // Polymorphisms returns the list of possible function signatures available for // this static polymorphic function. It relies on type and value hints to limit // the number of returned possibilities. func (obj *ContainsPolyFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) { // TODO: return `variant` as arg for now -- maybe there's a better way? variant := []*types.Type{types.NewType("func(needle variant, haystack variant) bool")} if partialType == nil { return variant, nil } var typ *types.Type ord := partialType.Ord if partialType.Map != nil { if len(ord) != 2 { return nil, fmt.Errorf("must have exactly three args in contains func") } if tNeedle, exists := partialType.Map[ord[0]]; exists && tNeedle != nil { typ = tNeedle // solved } if tHaystack, exists := partialType.Map[ord[1]]; exists && tHaystack != nil { if tHaystack.Kind != types.KindList { return nil, fmt.Errorf("second arg must be of kind list") } if typ != nil && typ.Cmp(tHaystack.Val) != nil { return nil, fmt.Errorf("list contents in second arg for contains must match search type") } typ = tHaystack.Val // solved } } if tOut := partialType.Out; tOut != nil { if tOut.Kind != types.KindBool { return nil, fmt.Errorf("return type must be a bool") } } if typ == nil { return variant, nil } typFunc := types.NewType(fmt.Sprintf("func(needle %s, haystack []%s) bool", typ.String(), typ.String())) // TODO: type check that the partialValues are compatible return []*types.Type{typFunc}, nil // solved! } // Build is run to turn the polymorphic, undetermined function, into the // specific statically typed version. It is usually run after Unify completes, // and must be run before Info() and any of the other Func interface methods are // used. This function is idempotent, as long as the arg isn't changed between // runs. func (obj *ContainsPolyFunc) Build(typ *types.Type) error { // typ is the KindFunc signature we're trying to build... if typ.Kind != types.KindFunc { return fmt.Errorf("input type must be of kind func") } if len(typ.Ord) != 2 { return fmt.Errorf("the contains function needs exactly two args") } if typ.Out == nil { return fmt.Errorf("return type of function must be specified") } if typ.Map == nil { return fmt.Errorf("invalid input type") } tNeedle, exists := typ.Map[typ.Ord[0]] if !exists || tNeedle == nil { return fmt.Errorf("first arg must be specified") } tHaystack, exists := typ.Map[typ.Ord[1]] if !exists || tHaystack == nil { return fmt.Errorf("second arg must be specified") } if tHaystack.Kind != types.KindList { return fmt.Errorf("second argument must be of kind list") } if err := tHaystack.Val.Cmp(tNeedle); err != nil { return errwrap.Wrapf(err, "type of first arg must match type of list elements in second arg") } if err := typ.Out.Cmp(types.TypeBool); err != nil { return errwrap.Wrapf(err, "return type must be a boolean") } obj.Type = tNeedle // type of value stored in our list return nil } // Validate tells us if the input struct takes a valid form. func (obj *ContainsPolyFunc) Validate() error { if obj.Type == nil { // build must be run first return fmt.Errorf("type is still unspecified") } return nil } // Info returns some static info about itself. Build must be called before this // will return correct data. func (obj *ContainsPolyFunc) Info() *interfaces.Info { var sig *types.Type if obj.Type != nil { // don't panic if called speculatively s := obj.Type.String() sig = types.NewType(fmt.Sprintf("func(needle %s, haystack []%s) bool", s, s)) } return &interfaces.Info{ Pure: true, Memo: false, Sig: sig, // func kind Err: obj.Validate(), } } // Init runs some startup code for this function. func (obj *ContainsPolyFunc) Init(init *interfaces.Init) error { obj.init = init obj.closeChan = make(chan struct{}) return nil } // Stream returns the changing values that this func has over time. func (obj *ContainsPolyFunc) Stream() error { defer close(obj.init.Output) // the sender closes for { select { case input, ok := <-obj.init.Input: if !ok { return nil // can't output any more } //if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil { // return errwrap.Wrapf(err, "wrong function input") //} if obj.last != nil && input.Cmp(obj.last) == nil { continue // value didn't change, skip it } obj.last = input // store for next needle := input.Struct()[containsArgNameNeedle] haystack := (input.Struct()[containsArgNameHaystack]).(*types.ListValue) _, exists := haystack.Contains(needle) var result types.Value = &types.BoolValue{V: exists} // if previous input was `2 + 4`, but now it // changed to `1 + 5`, the result is still the // same, so we can skip sending an update... if obj.result != nil && result.Cmp(obj.result) == nil { continue // result didn't change } obj.result = result // store new result case <-obj.closeChan: return nil } select { case obj.init.Output <- obj.result: // send case <-obj.closeChan: return nil } } } // Close runs some shutdown code for this function and turns off the stream. func (obj *ContainsPolyFunc) Close() error { close(obj.closeChan) return nil }