// Mgmt // Copyright (C) 2013-2021+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . package simplepoly import ( "fmt" "github.com/purpleidea/mgmt/lang/funcs" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" langutil "github.com/purpleidea/mgmt/lang/util" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // DirectInterface specifies whether we should use the direct function // API or not. If we don't use it, then these simple functions are // wrapped with the struct below. DirectInterface = false // XXX: fix any bugs and set to true! ) // RegisteredFuncs maps a function name to the corresponding static, pure funcs. var RegisteredFuncs = make(map[string][]*types.FuncValue) // must initialize // Register registers a simple, static, pure, polymorphic function. It is easier // to use than the raw function API, but also limits you to small, finite // numbers of different polymorphic type signatures per function name. You can // also register functions which return types containing variants, if you want // automatic matching based on partial types as well. Some complex patterns are // not possible with this API. Implementing a function like `printf` would not // be possible. Implementing a function which counts the number of elements in a // list would be. func Register(name string, fns []*types.FuncValue) { if _, exists := RegisteredFuncs[name]; exists { panic(fmt.Sprintf("a simple polyfunc named %s is already registered", name)) } if len(fns) == 0 { panic("no functions specified for simple polyfunc") } // check for uniqueness in type signatures typs := []*types.Type{} for _, f := range fns { if f.T == nil { panic(fmt.Sprintf("polyfunc %s contains a nil type signature", name)) } typs = append(typs, f.T) } if err := langutil.HasDuplicateTypes(typs); err != nil { panic(fmt.Sprintf("polyfunc %s has a duplicate implementation: %+v", name, err)) } _, err := consistentArgs(fns) if err != nil { panic(fmt.Sprintf("polyfunc %s has inconsistent arg names: %+v", name, err)) } RegisteredFuncs[name] = fns // store a copy for ourselves // register a copy in the main function database funcs.Register(name, func() interfaces.Func { return &WrappedFunc{Fns: fns} }) } // ModuleRegister is exactly like Register, except that it registers within a // named module. This is a helper function. func ModuleRegister(module, name string, fns []*types.FuncValue) { Register(module+funcs.ModuleSep+name, fns) } // consistentArgs returns the list of arg names across all the functions or // errors if one consistent list could not be found. func consistentArgs(fns []*types.FuncValue) ([]string, error) { if len(fns) == 0 { return nil, fmt.Errorf("no functions specified for simple polyfunc") } seq := []string{} for _, x := range fns { typ := x.Type() if typ.Kind != types.KindFunc { return nil, fmt.Errorf("expected %s, got %s", types.KindFunc, typ.Kind) } ord := typ.Ord // check l := len(seq) if m := len(ord); m < l { l = m // min } for i := 0; i < l; i++ { // check shorter list if seq[i] != ord[i] { return nil, fmt.Errorf("arg name at index %d differs (%s != %s)", i, seq[i], ord[i]) } } seq = ord // keep longer version! } return seq, nil } // WrappedFunc is a scaffolding function struct which fulfills the boiler-plate // for the function API, but that can run a very simple, static, pure, // polymorphic function. type WrappedFunc struct { Fns []*types.FuncValue // list of possible functions fn *types.FuncValue // the concrete version of our chosen function init *interfaces.Init last types.Value // last value received to use for diff result types.Value // last calculated output closeChan chan struct{} } // ArgGen returns the Nth arg name for this function. func (obj *WrappedFunc) ArgGen(index int) (string, error) { seq, err := consistentArgs(obj.Fns) if err != nil { return "", err } if l := len(seq); index >= l { return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) } return seq[index], nil } // Polymorphisms returns the list of possible function signatures available for // this static polymorphic function. It relies on type and value hints to limit // the number of returned possibilities. func (obj *WrappedFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) { if len(obj.Fns) == 0 { return nil, fmt.Errorf("no matching signatures for simple polyfunc") } // filter out anything that's incompatible with the partialType typs := []*types.Type{} for _, f := range obj.Fns { // TODO: if status is "both", should we skip as too difficult? _, err := f.T.ComplexCmp(partialType) // can an f.T with a variant compare with a partial ? (yes) if err != nil { continue } typs = append(typs, f.T) } return typs, nil } // Build is run to turn the polymorphic, undetermined function, into the // specific statically typed version. It is usually run after Unify completes, // and must be run before Info() and any of the other Func interface methods are // used. func (obj *WrappedFunc) Build(typ *types.Type) error { // typ is the KindFunc signature we're trying to build... index, err := langutil.FnMatch(typ, obj.Fns) if err != nil { return err } obj.buildFunction(typ, index) // found match at this index return nil } // buildFunction builds our concrete static function, from the potentially // abstract, possibly variant containing list of functions. func (obj *WrappedFunc) buildFunction(typ *types.Type, ix int) { obj.fn = obj.Fns[ix].Copy().(*types.FuncValue) obj.fn.T = typ.Copy() // overwrites any contained "variant" type } // Validate makes sure we've built our struct properly. It is usually unused for // normal functions that users can use directly. func (obj *WrappedFunc) Validate() error { if len(obj.Fns) == 0 { return fmt.Errorf("missing list of functions") } // check for uniqueness in type signatures typs := []*types.Type{} for _, f := range obj.Fns { if f.T == nil { return fmt.Errorf("nil type signature found") } typs = append(typs, f.T) } if err := langutil.HasDuplicateTypes(typs); err != nil { return errwrap.Wrapf(err, "duplicate implementation found") } if obj.fn == nil { // build must be run first return fmt.Errorf("a specific function has not been specified") } if obj.fn.T.Kind != types.KindFunc { return fmt.Errorf("func must be a kind of func") } return nil } // Info returns some static info about itself. func (obj *WrappedFunc) Info() *interfaces.Info { var typ *types.Type if obj.fn != nil { // don't panic if called speculatively typ = obj.fn.Type() } return &interfaces.Info{ Pure: true, Memo: false, // TODO: should this be something we specify here? Sig: typ, Err: obj.Validate(), } } // Init runs some startup code for this function. func (obj *WrappedFunc) Init(init *interfaces.Init) error { obj.init = init obj.closeChan = make(chan struct{}) return nil } // Stream returns the changing values that this func has over time. func (obj *WrappedFunc) Stream() error { defer close(obj.init.Output) // the sender closes for { select { case input, ok := <-obj.init.Input: if !ok { if len(obj.fn.Type().Ord) > 0 { return nil // can't output any more } // no inputs were expected, pass through once } if ok { //if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil { // return errwrap.Wrapf(err, "wrong function input") //} if obj.last != nil && input.Cmp(obj.last) == nil { continue // value didn't change, skip it } obj.last = input // store for next } values := []types.Value{} for _, name := range obj.fn.Type().Ord { x := input.Struct()[name] values = append(values, x) } if obj.init.Debug { obj.init.Logf("Calling function with: %+v", values) } result, err := obj.fn.Call(values) // (Value, error) if err != nil { if obj.init.Debug { obj.init.Logf("Function returned error: %+v", err) } return errwrap.Wrapf(err, "simple poly function errored") } if obj.init.Debug { obj.init.Logf("Function returned with: %+v", values) } // TODO: do we want obj.result to be a pointer instead? if obj.result == result { continue // result didn't change } obj.result = result // store new result case <-obj.closeChan: return nil } select { case obj.init.Output <- obj.result: // send if len(obj.fn.Type().Ord) == 0 { return nil // no more values, we're a pure func } case <-obj.closeChan: return nil } } } // Close runs some shutdown code for this function and turns off the stream. func (obj *WrappedFunc) Close() error { close(obj.closeChan) return nil }