// Mgmt // Copyright (C) James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Additional permission under GNU GPL version 3 section 7 // // If you modify this program, or any covered work, by linking or combining it // with embedded mcl code and modules (and that the embedded mcl code and // modules which link with this program, contain a copy of their source code in // the authoritative form) containing parts covered by the terms of any other // license, the licensors of this program grant you additional permission to // convey the resulting work. Furthermore, the licensors of this program grant // the original author, James Shubin, additional permission to update this // additional permission if he deems it necessary to achieve the goals of this // additional permission. package coreiter import ( "context" "fmt" "github.com/purpleidea/mgmt/lang/funcs" "github.com/purpleidea/mgmt/lang/funcs/structs" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/lang/types/full" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // MapFuncName is the name this function is registered as. MapFuncName = "map" // arg names... mapArgNameInputs = "inputs" mapArgNameFunction = "function" mapArgNameArgName = "name-which-can-vary-over-time" // XXX: weird but ok ) func init() { funcs.ModuleRegister(ModuleName, MapFuncName, func() interfaces.Func { return &MapFunc{} }) // must register the func and name } var _ interfaces.BuildableFunc = &MapFunc{} // ensure it meets this expectation // MapFunc is the standard map iterator function that applies a function to each // element in a list. It returns a list with the same number of elements as the // input list. There is no requirement that the element output type be the same // as the input element type. This implements the signature: `func(inputs []?1, // function func(?1) ?2) []?2` instead of the alternate with the two input args // swapped, because while the latter is more common with languages that support // partial function application, the former variant that we implemented is much // more readable when using an inline lambda. // TODO: should we extend this to support iterating over map's and structs, or // should that be a different function? I think a different function is best. type MapFunc struct { Type *types.Type // this is the type of the elements in our input list RType *types.Type // this is the type of the elements in our output list init *interfaces.Init last types.Value // last value received to use for diff lastFuncValue *full.FuncValue // remember the last function value lastInputListLength int // remember the last input list length inputListType *types.Type outputListType *types.Type argFuncs []interfaces.Func outputFunc interfaces.Func } // String returns a simple name for this function. This is needed so this struct // can satisfy the pgraph.Vertex interface. func (obj *MapFunc) String() string { return MapFuncName } // ArgGen returns the Nth arg name for this function. func (obj *MapFunc) ArgGen(index int) (string, error) { seq := []string{mapArgNameInputs, mapArgNameFunction} // inverted for pretty! if l := len(seq); index >= l { return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) } return seq[index], nil } // helper // // NOTE: The expression signature is shown here, but the actual "signature" of // this in the function graph returns the "dummy" value because we do the same // this that we do with ExprCall for example. That means that this function is // one of very few where the actual expr signature is different from the func! func (obj *MapFunc) sig() *types.Type { // func(inputs []?1, function func(?1) ?2) []?2 tIi := "?1" if obj.Type != nil { tIi = obj.Type.String() } tI := fmt.Sprintf("[]%s", tIi) // type of 1st arg tOi := "?2" if obj.RType != nil { tOi = obj.RType.String() } tO := fmt.Sprintf("[]%s", tOi) // return type // type of 2nd arg (the function) tF := fmt.Sprintf("func(%s %s) %s", mapArgNameArgName, tIi, tOi) s := fmt.Sprintf("func(%s %s, %s %s) %s", mapArgNameInputs, tI, mapArgNameFunction, tF, tO) return types.NewType(s) // yay! } // Build is run to turn the polymorphic, undetermined function, into the // specific statically typed version. It is usually run after Unify completes, // and must be run before Info() and any of the other Func interface methods are // used. This function is idempotent, as long as the arg isn't changed between // runs. func (obj *MapFunc) Build(typ *types.Type) (*types.Type, error) { // typ is the KindFunc signature we're trying to build... if typ.Kind != types.KindFunc { return nil, fmt.Errorf("input type must be of kind func") } if len(typ.Ord) != 2 { return nil, fmt.Errorf("the map needs exactly two args") } if typ.Map == nil { return nil, fmt.Errorf("the map is nil") } tInputs, exists := typ.Map[typ.Ord[0]] if !exists || tInputs == nil { return nil, fmt.Errorf("first argument was missing") } tFunction, exists := typ.Map[typ.Ord[1]] if !exists || tFunction == nil { return nil, fmt.Errorf("second argument was missing") } if tInputs.Kind != types.KindList { return nil, fmt.Errorf("first argument must be of kind list") } if tFunction.Kind != types.KindFunc { return nil, fmt.Errorf("second argument must be of kind func") } if typ.Out == nil { return nil, fmt.Errorf("return type must be specified") } if typ.Out.Kind != types.KindList { return nil, fmt.Errorf("return argument must be a list") } if len(tFunction.Ord) != 1 { return nil, fmt.Errorf("the functions map needs exactly one arg") } if tFunction.Map == nil { return nil, fmt.Errorf("the functions map is nil") } tArg, exists := tFunction.Map[tFunction.Ord[0]] if !exists || tArg == nil { return nil, fmt.Errorf("the functions first argument was missing") } if err := tArg.Cmp(tInputs.Val); err != nil { return nil, errwrap.Wrapf(err, "the functions arg type must match the input list contents type") } if tFunction.Out == nil { return nil, fmt.Errorf("return type of function must be specified") } if err := tFunction.Out.Cmp(typ.Out.Val); err != nil { return nil, errwrap.Wrapf(err, "return type of function must match returned list contents type") } // TODO: Do we need to be extra careful and check that this matches? // unificationUtil.UnifyCmp(typ, obj.sig()) != nil {} obj.Type = tInputs.Val // or tArg obj.RType = tFunction.Out // or typ.Out.Val return obj.sig(), nil } // SetShape tells the function about some special graph engine pointers. func (obj *MapFunc) SetShape(argFuncs []interfaces.Func, outputFunc interfaces.Func) { obj.argFuncs = argFuncs obj.outputFunc = outputFunc } // Validate tells us if the input struct takes a valid form. func (obj *MapFunc) Validate() error { if obj.Type == nil || obj.RType == nil { return fmt.Errorf("type is not yet known") } if obj.argFuncs == nil || obj.outputFunc == nil { return fmt.Errorf("function did not receive shape information") } return nil } // Info returns some static info about itself. Build must be called before this // will return correct data. func (obj *MapFunc) Info() *interfaces.Info { return &interfaces.Info{ Pure: false, // XXX: what if the input function isn't pure? Memo: false, Fast: false, Spec: false, // must be false with the current graph shape code Sig: obj.sig(), // helper Err: obj.Validate(), } } // Init runs some startup code for this function. func (obj *MapFunc) Init(init *interfaces.Init) error { obj.init = init obj.lastFuncValue = nil obj.lastInputListLength = -1 obj.inputListType = types.NewType(fmt.Sprintf("[]%s", obj.Type)) obj.outputListType = types.NewType(fmt.Sprintf("[]%s", obj.RType)) return nil } func (obj *MapFunc) replaceSubGraph(subgraphInput interfaces.Func) error { // Create a subgraph which splits the input list into 'n' nodes, applies // 'newFuncValue' to each, then combines the 'n' outputs back into a // list. // // Here is what the subgraph looks like: // // digraph { // "subgraphInput" -> "inputElemFunc0" // "subgraphInput" -> "inputElemFunc1" // "subgraphInput" -> "inputElemFunc2" // // "inputElemFunc0" -> "outputElemFunc0" // "inputElemFunc1" -> "outputElemFunc1" // "inputElemFunc2" -> "outputElemFunc2" // // "outputElem0" -> "outputListFunc" // "outputElem1" -> "outputListFunc" // "outputElem2" -> "outputListFunc" // // "outputListFunc" -> "funcSubgraphOutput" // } // delete the old subgraph if err := obj.init.Txn.Reverse(); err != nil { return errwrap.Wrapf(err, "could not Reverse") } // create the new subgraph // XXX: Should we move creation of funcSubgraphOutput into Init() ? funcSubgraphOutput := &structs.OutputFunc{ // the new graph shape thing! //Textarea: obj.Textarea, Name: "funcSubgraphOutput", Type: obj.sig().Out, EdgeName: structs.OutputFuncArgName, } obj.init.Txn.AddVertex(funcSubgraphOutput) obj.init.Txn.AddEdge(funcSubgraphOutput, obj.outputFunc, &interfaces.FuncEdge{Args: []string{structs.OutputFuncArgName}}) // "out" // XXX: hack add this edge that I thought would happen in call.go obj.init.Txn.AddEdge(obj, funcSubgraphOutput, &interfaces.FuncEdge{Args: []string{structs.OutputFuncDummyArgName}}) // "dummy" m := make(map[string]*types.Type) ord := []string{} for i := 0; i < obj.lastInputListLength; i++ { argName := fmt.Sprintf("outputElem%d", i) m[argName] = obj.RType ord = append(ord, argName) } typ := &types.Type{ Kind: types.KindFunc, Map: m, Ord: ord, Out: obj.outputListType, } outputListFunc := structs.SimpleFnToDirectFunc( "mapOutputList", &types.FuncValue{ V: func(_ context.Context, args []types.Value) (types.Value, error) { listValue := &types.ListValue{ V: args, T: obj.outputListType, } return listValue, nil }, T: typ, }, ) edge := &interfaces.FuncEdge{Args: []string{structs.OutputFuncArgName}} // "out" obj.init.Txn.AddVertex(outputListFunc) obj.init.Txn.AddEdge(outputListFunc, funcSubgraphOutput, edge) for i := 0; i < obj.lastInputListLength; i++ { i := i inputElemFunc := structs.SimpleFnToDirectFunc( fmt.Sprintf("mapInputElem[%d]", i), &types.FuncValue{ V: func(_ context.Context, args []types.Value) (types.Value, error) { if len(args) != 1 { return nil, fmt.Errorf("inputElemFunc: expected a single argument") } arg := args[0] list, ok := arg.(*types.ListValue) if !ok { return nil, fmt.Errorf("inputElemFunc: expected a ListValue argument") } // Extract the correct list element. return list.List()[i], nil }, T: types.NewType(fmt.Sprintf("func(inputList %s) %s", obj.inputListType, obj.Type)), }, ) obj.init.Txn.AddVertex(inputElemFunc) outputElemFunc, err := obj.lastFuncValue.CallWithFuncs(obj.init.Txn, []interfaces.Func{inputElemFunc}, funcSubgraphOutput) if err != nil { return errwrap.Wrapf(err, "could not call obj.lastFuncValue.CallWithFuncs()") } obj.init.Txn.AddEdge(subgraphInput, inputElemFunc, &interfaces.FuncEdge{ Args: []string{"inputList"}, }) obj.init.Txn.AddEdge(outputElemFunc, outputListFunc, &interfaces.FuncEdge{ Args: []string{fmt.Sprintf("outputElem%d", i)}, }) } return obj.init.Txn.Commit() } // Call this function with the input args and return the value if it is possible // to do so at this time. func (obj *MapFunc) Call(ctx context.Context, args []types.Value) (types.Value, error) { if len(args) < 2 { return nil, fmt.Errorf("not enough args") } // Check before we send to a chan where we'd need Stream to be running. if obj.init == nil { return nil, funcs.ErrCantSpeculate } // Need this before we can *really* run this properly. if len(obj.argFuncs) != 2 { return nil, funcs.ErrCantSpeculate //return nil, fmt.Errorf("unexpected input arg length") } newInputList := args[0] value := args[1] newFuncValue, ok := value.(*full.FuncValue) if !ok { return nil, fmt.Errorf("programming error, can't convert to *FuncValue") } a := obj.last != nil && newInputList.Cmp(obj.last) == nil b := obj.lastFuncValue != nil && newFuncValue == obj.lastFuncValue if a && b { return types.NewNil(), nil // dummy value } obj.last = newInputList // store for next obj.lastFuncValue = newFuncValue // Every time the FuncValue or the length of the list changes, recreate // the subgraph, by calling the FuncValue N times on N nodes, each of // which extracts one of the N values in the list. n := len(newInputList.List()) c := n == obj.lastInputListLength if b && c { return types.NewNil(), nil // dummy value } obj.lastInputListLength = n if b && !c { // different length list return types.NewNil(), nil // dummy value } // If we have a new function or the length of the input list has // changed, then we need to replace the subgraph with a new one that // uses the new function the correct number of times. subgraphInput := obj.argFuncs[0] // replaceSubGraph uses the above two values if err := obj.replaceSubGraph(subgraphInput); err != nil { return nil, errwrap.Wrapf(err, "could not replace subgraph") } return nil, interfaces.ErrInterrupt } // Cleanup runs after that function was removed from the graph. func (obj *MapFunc) Cleanup(ctx context.Context) error { obj.init.Txn.Reverse() //obj.init.Txn.DeleteVertex(subgraphInput) // XXX: should we delete it? return obj.init.Txn.Commit() } // Copy is implemented so that the type values are not lost if we copy this // function. func (obj *MapFunc) Copy() interfaces.Func { return &MapFunc{ Type: obj.Type, // don't copy because we use this after unification RType: obj.RType, // don't copy because we use this after unification init: obj.init, // likely gets overwritten anyways } }