// Mgmt // Copyright (C) 2013-2024+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Additional permission under GNU GPL version 3 section 7 // // If you modify this program, or any covered work, by linking or combining it // with embedded mcl code and modules (and that the embedded mcl code and // modules which link with this program, contain a copy of their source code in // the authoritative form) containing parts covered by the terms of any other // license, the licensors of this program grant you additional permission to // convey the resulting work. Furthermore, the licensors of this program grant // the original author, James Shubin, additional permission to update this // additional permission if he deems it necessary to achieve the goals of this // additional permission. package simplepoly import ( "context" "fmt" "github.com/purpleidea/mgmt/lang/funcs" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" langUtil "github.com/purpleidea/mgmt/lang/util" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // DirectInterface specifies whether we should use the direct function // API or not. If we don't use it, then these simple functions are // wrapped with the struct below. DirectInterface = false // XXX: fix any bugs and set to true! // AllowSimplePolyVariantDefinitions specifies whether we're allowed to // include the `variant` type in definitons for simple poly functions. // Long term, it's probably better to have this be false because it adds // complexity into this simple poly API, and the root of which is the // argComplexCmp which is only moderately powerful, but I figured I'd // try and allow this for now because I liked how elegant the definition // of the len() function was. AllowSimplePolyVariantDefinitions = true ) // RegisteredFuncs maps a function name to the corresponding static, pure funcs. var RegisteredFuncs = make(map[string][]*types.FuncValue) // must initialize // Register registers a simple, static, pure, polymorphic function. It is easier // to use than the raw function API, but also limits you to small, finite // numbers of different polymorphic type signatures per function name. You can // also register functions which return types containing variants, if you want // automatic matching based on partial types as well. Some complex patterns are // not possible with this API. Implementing a function like `printf` would not // be possible. Implementing a function which counts the number of elements in a // list would be. func Register(name string, fns []*types.FuncValue) { if _, exists := RegisteredFuncs[name]; exists { panic(fmt.Sprintf("a simple polyfunc named %s is already registered", name)) } if len(fns) == 0 { panic("no functions specified for simple polyfunc") } // check for uniqueness in type signatures typs := []*types.Type{} for i, f := range fns { if f.T == nil { panic(fmt.Sprintf("polyfunc %s contains a nil type signature", name)) } if f.T.Kind != types.KindFunc { // even when this includes a variant panic(fmt.Sprintf("polyfunc %s must be of kind func", name)) } if !AllowSimplePolyVariantDefinitions && f.T.HasVariant() { panic(fmt.Sprintf("polyfunc %s contains a variant type signature at index: %d", name, i)) } typs = append(typs, f.T) } if err := langUtil.HasDuplicateTypes(typs); err != nil { panic(fmt.Sprintf("polyfunc %s has a duplicate implementation: %+v", name, err)) } _, err := consistentArgs(fns) if err != nil { panic(fmt.Sprintf("polyfunc %s has inconsistent arg names: %+v", name, err)) } RegisteredFuncs[name] = fns // store a copy for ourselves // register a copy in the main function database funcs.Register(name, func() interfaces.Func { return &WrappedFunc{Name: name, Fns: fns} }) } // ModuleRegister is exactly like Register, except that it registers within a // named module. This is a helper function. func ModuleRegister(module, name string, fns []*types.FuncValue) { Register(module+funcs.ModuleSep+name, fns) } // consistentArgs returns the list of arg names across all the functions or // errors if one consistent list could not be found. func consistentArgs(fns []*types.FuncValue) ([]string, error) { if len(fns) == 0 { return nil, fmt.Errorf("no functions specified for simple polyfunc") } seq := []string{} for _, x := range fns { typ := x.Type() if typ.Kind != types.KindFunc { return nil, fmt.Errorf("expected %s, got %s", types.KindFunc, typ.Kind) } ord := typ.Ord // check l := len(seq) if m := len(ord); m < l { l = m // min } for i := 0; i < l; i++ { // check shorter list if seq[i] != ord[i] { return nil, fmt.Errorf("arg name at index %d differs (%s != %s)", i, seq[i], ord[i]) } } seq = ord // keep longer version! } return seq, nil } var _ interfaces.PolyFunc = &WrappedFunc{} // ensure it meets this expectation // WrappedFunc is a scaffolding function struct which fulfills the boiler-plate // for the function API, but that can run a very simple, static, pure, // polymorphic function. type WrappedFunc struct { Name string Fns []*types.FuncValue // list of possible functions fn *types.FuncValue // the concrete version of our chosen function init *interfaces.Init last types.Value // last value received to use for diff result types.Value // last calculated output } // String returns a simple name for this function. This is needed so this struct // can satisfy the pgraph.Vertex interface. func (obj *WrappedFunc) String() string { return fmt.Sprintf("%s @ %p", obj.Name, obj) // be more unique! } // ArgGen returns the Nth arg name for this function. func (obj *WrappedFunc) ArgGen(index int) (string, error) { seq, err := consistentArgs(obj.Fns) if err != nil { return "", err } if l := len(seq); index >= l { return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) } return seq[index], nil } // Unify returns the list of invariants that this func produces. func (obj *WrappedFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) { if len(obj.Fns) == 0 { return nil, fmt.Errorf("no matching signatures for simple polyfunc") } var invariants []interfaces.Invariant var invar interfaces.Invariant // Special case to help it solve faster. We still include the generator, // in the chance that the relationship between the args is an important // linkage that we should be specifying somehow... if len(obj.Fns) == 1 { fn := obj.Fns[0] if fn == nil { // programming error return nil, fmt.Errorf("simple poly function value is nil") } typ := fn.T if typ == nil { // programming error return nil, fmt.Errorf("simple poly function type is nil") } invar = &interfaces.EqualsInvariant{ Expr: expr, Type: typ, } invariants = append(invariants, invar) } dummyOut := &interfaces.ExprAny{} // corresponds to the out type // return type is currently unknown invar = &interfaces.AnyInvariant{ Expr: dummyOut, // make sure to include it so we know it solves } invariants = append(invariants, invar) // generator function fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) { for _, invariant := range fnInvariants { // search for this special type of invariant cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant) if !ok { continue } // did we find the mapping from us to ExprCall ? if cfavInvar.Func != expr { continue } // cfavInvar.Expr is the ExprCall! (the return pointer) // cfavInvar.Args are the args that ExprCall uses! // any number of args are permitted // helper function to build our complex func invariants buildInvar := func(typ *types.Type) ([]interfaces.Invariant, error) { var invariants []interfaces.Invariant var invar interfaces.Invariant // full function mapped := make(map[string]interfaces.Expr) ordered := []string{} // assume this is a types.KindFunc for i, x := range typ.Ord { t := typ.Map[x] if t == nil { // programming error return nil, fmt.Errorf("unexpected func nil arg (%d) type", i) } argName, err := obj.ArgGen(i) if err != nil { return nil, err } dummyArg := &interfaces.ExprAny{} invar = &interfaces.EqualsInvariant{ Expr: dummyArg, Type: t, } invariants = append(invariants, invar) invar = &interfaces.EqualityInvariant{ Expr1: dummyArg, Expr2: cfavInvar.Args[i], } invariants = append(invariants, invar) mapped[argName] = dummyArg ordered = append(ordered, argName) } invar = &interfaces.EqualityWrapFuncInvariant{ Expr1: expr, // maps directly to us! Expr2Map: mapped, Expr2Ord: ordered, Expr2Out: dummyOut, } invariants = append(invariants, invar) if typ.Out == nil { // programming error return nil, fmt.Errorf("unexpected func nil return type") } // remember to add the relationship to the // return type of the functions as well... invar = &interfaces.EqualsInvariant{ Expr: dummyOut, Type: typ.Out, } invariants = append(invariants, invar) return invariants, nil } // argCmp trims down the list of possible types... // this makes our exclusive invariants smaller, and // easier to solve without combinatorial slow recursion argCmp := func(typ *types.Type) bool { if len(cfavInvar.Args) != len(typ.Ord) { return false // arg length differs } for i, x := range cfavInvar.Args { if t, err := x.Type(); err == nil { if t.Cmp(typ.Map[typ.Ord[i]]) != nil { return false // impossible! } } // is the type already known as solved? if t, exists := solved[x]; exists { // alternate way to lookup type if t.Cmp(typ.Map[typ.Ord[i]]) != nil { return false // impossible! } } } return true // possible } argComplexCmp := func(typ *types.Type) (*types.Type, bool) { if !typ.HasVariant() { return typ, argCmp(typ) } mapped := make(map[string]*types.Type) ordered := []string{} out := typ.Out if len(cfavInvar.Args) != len(typ.Ord) { return nil, false // arg length differs } for i, x := range cfavInvar.Args { name := typ.Ord[i] if t, err := x.Type(); err == nil { if _, err := t.ComplexCmp(typ.Map[typ.Ord[i]]); err != nil { return nil, false // impossible! } mapped[name] = t // found it } // is the type already known as solved? if t, exists := solved[x]; exists { // alternate way to lookup type if _, err := t.ComplexCmp(typ.Map[typ.Ord[i]]); err != nil { return nil, false // impossible! } // check it matches the above type if oldT, exists := mapped[name]; exists && t.Cmp(oldT) != nil { return nil, false // impossible! } mapped[name] = t // found it } if _, exists := mapped[name]; !exists { // impossible, but for a // different reason: we don't // have enough information to // plausibly allow this type to // pass through, because we'd // leave a variant in, so skip // it. We'll probably fail in // the end with a misleading // "only recursive solutions // left" error, but it just // means we can't solve this! return nil, false } ordered = append(ordered, name) } // if we happen to know the type of the return expr if t, exists := solved[cfavInvar.Expr]; exists { if out != nil && t.Cmp(out) != nil { return nil, false // inconsistent! } out = t // learn! } return &types.Type{ Kind: types.KindFunc, Map: mapped, Ord: ordered, Out: out, }, true // possible } var invariants []interfaces.Invariant var invar interfaces.Invariant // add the relationship to the returned value invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Expr, Expr2: dummyOut, } invariants = append(invariants, invar) ors := []interfaces.Invariant{} // solve only one from this list for _, f := range obj.Fns { // operator func types typ := f.T if typ == nil { return nil, fmt.Errorf("nil type signature found") } if typ.Kind != types.KindFunc { // programming error return nil, fmt.Errorf("type must be a kind of func") } // filter out impossible types, and on success, // use the replacement type that we found here! // this is because the input might be a variant // and after processing this, we get a concrete // type that can be substituted in here instead if typ, ok = argComplexCmp(typ); !ok { continue // not a possible match } if typ.HasVariant() { // programming error return nil, fmt.Errorf("a variant type snuck through: %+v", typ) } invars, err := buildInvar(typ) if err != nil { return nil, err } // all of these need to be true together and := &interfaces.ConjunctionInvariant{ Invariants: invars, } ors = append(ors, and) // one solution added! } if len(ors) == 0 { return nil, fmt.Errorf("no matching signatures for simple poly func could be found") } // TODO: To improve the filtering, it would be // excellent if we could examine the return type in // `solved` somehow (if it is known) and use that to // trim our list of exclusives down even further! The // smaller the exclusives are, the faster everything in // the solver can run. invar = &interfaces.ExclusiveInvariant{ Invariants: ors, // one and only one of these should be true } if len(ors) == 1 { invar = ors[0] // there should only be one } invariants = append(invariants, invar) // TODO: do we return this relationship with ExprCall? invar = &interfaces.EqualityWrapCallInvariant{ // TODO: should Expr1 and Expr2 be reversed??? Expr1: cfavInvar.Expr, //Expr2Func: cfavInvar.Func, // same as below Expr2Func: expr, } invariants = append(invariants, invar) // TODO: are there any other invariants we should build? return invariants, nil // generator return } // We couldn't tell the solver anything it didn't already know! return nil, fmt.Errorf("couldn't generate new invariants") } invar = &interfaces.GeneratorInvariant{ Func: fn, } invariants = append(invariants, invar) return invariants, nil } // Polymorphisms returns the list of possible function signatures available for // this static polymorphic function. It relies on type and value hints to limit // the number of returned possibilities. func (obj *WrappedFunc) Polymorphisms(partialType *types.Type, partialValues []types.Value) ([]*types.Type, error) { if len(obj.Fns) == 0 { return nil, fmt.Errorf("no matching signatures for simple polyfunc") } // filter out anything that's incompatible with the partialType typs := []*types.Type{} for _, f := range obj.Fns { // TODO: if status is "both", should we skip as too difficult? _, err := f.T.ComplexCmp(partialType) // can an f.T with a variant compare with a partial ? (yes) if err != nil { continue } typs = append(typs, f.T) } return typs, nil } // Build is run to turn the polymorphic, undetermined function, into the // specific statically typed version. It is usually run after Unify completes, // and must be run before Info() and any of the other Func interface methods are // used. func (obj *WrappedFunc) Build(typ *types.Type) (*types.Type, error) { // typ is the KindFunc signature we're trying to build... index, err := langUtil.FnMatch(typ, obj.Fns) if err != nil { return nil, err } newTyp := obj.buildFunction(typ, index) // found match at this index return newTyp, nil } // buildFunction builds our concrete static function, from the potentially // abstract, possibly variant containing list of functions. func (obj *WrappedFunc) buildFunction(typ *types.Type, ix int) *types.Type { cp := obj.Fns[ix].Copy() fn, ok := cp.(*types.FuncValue) if !ok { panic("unexpected type") } obj.fn = fn // FIXME: if obj.fn.T == nil {} // occasionally this is nil, is it a bug? obj.fn.T = typ.Copy() // overwrites any contained "variant" type return obj.fn.T } // Validate makes sure we've built our struct properly. It is usually unused for // normal functions that users can use directly. func (obj *WrappedFunc) Validate() error { if len(obj.Fns) == 0 { return fmt.Errorf("missing list of functions") } // check for uniqueness in type signatures typs := []*types.Type{} for _, f := range obj.Fns { if f.T == nil { return fmt.Errorf("nil type signature found") } typs = append(typs, f.T) } if err := langUtil.HasDuplicateTypes(typs); err != nil { return errwrap.Wrapf(err, "duplicate implementation found") } if obj.fn == nil { // build must be run first return fmt.Errorf("a specific function has not been specified") } if obj.fn.T.Kind != types.KindFunc { return fmt.Errorf("func must be a kind of func") } return nil } // Info returns some static info about itself. func (obj *WrappedFunc) Info() *interfaces.Info { var typ *types.Type if obj.fn != nil { // don't panic if called speculatively typ = obj.fn.Type() } return &interfaces.Info{ Pure: true, Memo: false, // TODO: should this be something we specify here? Sig: typ, Err: obj.Validate(), } } // Init runs some startup code for this function. func (obj *WrappedFunc) Init(init *interfaces.Init) error { obj.init = init return nil } // Stream returns the changing values that this func has over time. func (obj *WrappedFunc) Stream(ctx context.Context) error { defer close(obj.init.Output) // the sender closes for { select { case input, ok := <-obj.init.Input: if !ok { if len(obj.fn.Type().Ord) > 0 { return nil // can't output any more } // no inputs were expected, pass through once } if ok { //if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil { // return errwrap.Wrapf(err, "wrong function input") //} if obj.last != nil && input.Cmp(obj.last) == nil { continue // value didn't change, skip it } obj.last = input // store for next } values := []types.Value{} for _, name := range obj.fn.Type().Ord { x := input.Struct()[name] values = append(values, x) } if obj.init.Debug { obj.init.Logf("Calling function with: %+v", values) } result, err := obj.fn.Call(ctx, values) // (Value, error) if err != nil { if obj.init.Debug { obj.init.Logf("Function returned error: %+v", err) } return errwrap.Wrapf(err, "simple poly function errored") } if obj.init.Debug { obj.init.Logf("Function returned with: %+v", result) } // TODO: do we want obj.result to be a pointer instead? if obj.result == result { continue // result didn't change } obj.result = result // store new result case <-ctx.Done(): return nil } select { case obj.init.Output <- obj.result: // send if len(obj.fn.Type().Ord) == 0 { return nil // no more values, we're a pure func } case <-ctx.Done(): return nil } } }