// Mgmt // Copyright (C) 2013-2021+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . package unification // TODO: can we put this solver in a sub-package? import ( "fmt" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // Name is the prefix for our solver log messages. Name = "solver: simple" // ErrAmbiguous means we couldn't find a solution, but we weren't // inconsistent. ErrAmbiguous = interfaces.Error("can't unify, no equalities were consumed, we're ambiguous") // AllowRecursion specifies whether we're allowed to use the recursive // solver or not. It uses an absurd amount of memory, and might hang // your system if a simple solution doesn't exist. AllowRecursion = false // RecursionDepthLimit specifies the max depth that is allowed. // FIXME: RecursionDepthLimit is not currently implemented RecursionDepthLimit = 5 // TODO: pick a better value ? // RecursionInvariantLimit specifies the max number of invariants we can // recurse into. RecursionInvariantLimit = 5 // TODO: pick a better value ? ) // SimpleInvariantSolverLogger is a wrapper which returns a // SimpleInvariantSolver with the log parameter of your choice specified. The // result satisfies the correct signature for the solver parameter of the // Unification function. func SimpleInvariantSolverLogger(logf func(format string, v ...interface{})) func([]interfaces.Invariant, []interfaces.Expr) (*InvariantSolution, error) { return func(invariants []interfaces.Invariant, expected []interfaces.Expr) (*InvariantSolution, error) { return SimpleInvariantSolver(invariants, expected, logf) } } // SimpleInvariantSolver is an iterative invariant solver for AST expressions. // It is intended to be very simple, even if it's computationally inefficient. func SimpleInvariantSolver(invariants []interfaces.Invariant, expected []interfaces.Expr, logf func(format string, v ...interface{})) (*InvariantSolution, error) { debug := false // XXX: add to interface process := func(invariants []interfaces.Invariant) ([]interfaces.Invariant, []*ExclusiveInvariant, error) { equalities := []interfaces.Invariant{} exclusives := []*ExclusiveInvariant{} for _, x := range invariants { switch invariant := x.(type) { case *EqualsInvariant: equalities = append(equalities, invariant) case *EqualityInvariant: equalities = append(equalities, invariant) case *EqualityInvariantList: // de-construct this list variant into a series // of equality variants so that our solver can // be implemented more simply... if len(invariant.Exprs) < 2 { return nil, nil, fmt.Errorf("list invariant needs at least two elements") } for i := 0; i < len(invariant.Exprs)-1; i++ { invar := &EqualityInvariant{ Expr1: invariant.Exprs[i], Expr2: invariant.Exprs[i+1], } equalities = append(equalities, invar) } case *EqualityWrapListInvariant: equalities = append(equalities, invariant) case *EqualityWrapMapInvariant: equalities = append(equalities, invariant) case *EqualityWrapStructInvariant: equalities = append(equalities, invariant) case *EqualityWrapFuncInvariant: equalities = append(equalities, invariant) case *EqualityWrapCallInvariant: equalities = append(equalities, invariant) // contains a list of invariants which this represents case *ConjunctionInvariant: for _, invar := range invariant.Invariants { equalities = append(equalities, invar) } case *ExclusiveInvariant: // these are special, note the different list if len(invariant.Invariants) > 0 { exclusives = append(exclusives, invariant) } case *AnyInvariant: equalities = append(equalities, invariant) default: return nil, nil, fmt.Errorf("unknown invariant type: %T", x) } } return equalities, exclusives, nil } logf("%s: invariants:", Name) for i, x := range invariants { logf("invariant(%d): %T: %s", i, x, x) } solved := make(map[interfaces.Expr]*types.Type) // iterate through all invariants, flattening and sorting the list... equalities, exclusives, err := process(invariants) if err != nil { return nil, err } // XXX: if these partials all shared the same variable definition, would // it all work??? Maybe we don't even need the first map prefix... listPartials := make(map[interfaces.Expr]map[interfaces.Expr]*types.Type) mapPartials := make(map[interfaces.Expr]map[interfaces.Expr]*types.Type) structPartials := make(map[interfaces.Expr]map[interfaces.Expr]*types.Type) funcPartials := make(map[interfaces.Expr]map[interfaces.Expr]*types.Type) callPartials := make(map[interfaces.Expr]map[interfaces.Expr]*types.Type) isSolved := func(solved map[interfaces.Expr]*types.Type) bool { for _, x := range expected { if typ, exists := solved[x]; !exists || typ == nil { return false } } return true } logf("%s: starting loop with %d equalities", Name, len(equalities)) // run until we're solved, stop consuming equalities, or type clash Loop: for { logf("%s: iterate...", Name) if len(equalities) == 0 && len(exclusives) == 0 { break // we're done, nothing left } used := []int{} for i, x := range equalities { logf("%s: match(%T): %+v", Name, x, x) // TODO: could each of these cases be implemented as a // method on the Invariant type to simplify this code? switch eq := x.(type) { // trivials case *EqualsInvariant: typ, exists := solved[eq.Expr] if !exists { solved[eq.Expr] = eq.Type // yay, we learned something! used = append(used, i) // mark equality as used up logf("%s: solved trivial equality", Name) continue } // we already specified this, so check the repeat is consistent if err := typ.Cmp(eq.Type); err != nil { // this error shouldn't happen unless we purposefully // try to trick the solver, or we're in a recursive try return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with equals") } used = append(used, i) // mark equality as duplicate logf("%s: duplicate trivial equality", Name) continue // partials case *EqualityWrapListInvariant: if _, exists := listPartials[eq.Expr1]; !exists { listPartials[eq.Expr1] = make(map[interfaces.Expr]*types.Type) } if typ, exists := solved[eq.Expr1]; exists { // wow, now known, so tell the partials! // TODO: this assumes typ is a list, is that guaranteed? listPartials[eq.Expr1][eq.Expr2Val] = typ.Val } // can we add to partials ? for _, y := range []interfaces.Expr{eq.Expr2Val} { typ, exists := solved[y] if !exists { continue } t, exists := listPartials[eq.Expr1][y] if !exists { listPartials[eq.Expr1][y] = typ // learn! continue } if err := t.Cmp(typ); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial list val") } } // can we solve anything? var ready = true // assume ready typ := &types.Type{ Kind: types.KindList, } valTyp, exists := listPartials[eq.Expr1][eq.Expr2Val] if !exists { ready = false // nope! } else { typ.Val = valTyp // build up typ } if ready { if t, exists := solved[eq.Expr1]; exists { if err := t.Cmp(typ); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with list") } } // sub checks if t, exists := solved[eq.Expr2Val]; exists { if err := t.Cmp(typ.Val); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with list val") } } solved[eq.Expr1] = typ // yay, we learned something! solved[eq.Expr2Val] = typ.Val // yay, we learned something! used = append(used, i) // mark equality as used up logf("%s: solved list wrap partial", Name) continue } case *EqualityWrapMapInvariant: if _, exists := mapPartials[eq.Expr1]; !exists { mapPartials[eq.Expr1] = make(map[interfaces.Expr]*types.Type) } if typ, exists := solved[eq.Expr1]; exists { // wow, now known, so tell the partials! // TODO: this assumes typ is a map, is that guaranteed? mapPartials[eq.Expr1][eq.Expr2Key] = typ.Key mapPartials[eq.Expr1][eq.Expr2Val] = typ.Val } // can we add to partials ? for _, y := range []interfaces.Expr{eq.Expr2Key, eq.Expr2Val} { typ, exists := solved[y] if !exists { continue } t, exists := mapPartials[eq.Expr1][y] if !exists { mapPartials[eq.Expr1][y] = typ // learn! continue } if err := t.Cmp(typ); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial map key/val") } } // can we solve anything? var ready = true // assume ready typ := &types.Type{ Kind: types.KindMap, } keyTyp, exists := mapPartials[eq.Expr1][eq.Expr2Key] if !exists { ready = false // nope! } else { typ.Key = keyTyp // build up typ } valTyp, exists := mapPartials[eq.Expr1][eq.Expr2Val] if !exists { ready = false // nope! } else { typ.Val = valTyp // build up typ } if ready { if t, exists := solved[eq.Expr1]; exists { if err := t.Cmp(typ); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with map") } } // sub checks if t, exists := solved[eq.Expr2Key]; exists { if err := t.Cmp(typ.Key); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with map key") } } if t, exists := solved[eq.Expr2Val]; exists { if err := t.Cmp(typ.Val); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with map val") } } solved[eq.Expr1] = typ // yay, we learned something! solved[eq.Expr2Key] = typ.Key // yay, we learned something! solved[eq.Expr2Val] = typ.Val // yay, we learned something! used = append(used, i) // mark equality as used up logf("%s: solved map wrap partial", Name) continue } case *EqualityWrapStructInvariant: if _, exists := structPartials[eq.Expr1]; !exists { structPartials[eq.Expr1] = make(map[interfaces.Expr]*types.Type) } if typ, exists := solved[eq.Expr1]; exists { // wow, now known, so tell the partials! // TODO: this assumes typ is a struct, is that guaranteed? if len(typ.Ord) != len(eq.Expr2Ord) { return nil, fmt.Errorf("struct field count differs") } for i, name := range eq.Expr2Ord { expr := eq.Expr2Map[name] // assume key exists structPartials[eq.Expr1][expr] = typ.Map[typ.Ord[i]] // assume key exists } } // can we add to partials ? for name, y := range eq.Expr2Map { typ, exists := solved[y] if !exists { continue } t, exists := structPartials[eq.Expr1][y] if !exists { structPartials[eq.Expr1][y] = typ // learn! continue } if err := t.Cmp(typ); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial struct field: %s", name) } } // can we solve anything? var ready = true // assume ready typ := &types.Type{ Kind: types.KindStruct, } typ.Map = make(map[string]*types.Type) for name, y := range eq.Expr2Map { t, exists := structPartials[eq.Expr1][y] if !exists { ready = false // nope! break } typ.Map[name] = t // build up typ } if ready { typ.Ord = eq.Expr2Ord // known order if t, exists := solved[eq.Expr1]; exists { if err := t.Cmp(typ); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with struct") } } // sub checks for name, y := range eq.Expr2Map { if t, exists := solved[y]; exists { if err := t.Cmp(typ.Map[name]); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with struct field: %s", name) } } } solved[eq.Expr1] = typ // yay, we learned something! // we should add the other expr's in too... for name, y := range eq.Expr2Map { solved[y] = typ.Map[name] // yay, we learned something! } used = append(used, i) // mark equality as used up logf("%s: solved struct wrap partial", Name) continue } case *EqualityWrapFuncInvariant: if _, exists := funcPartials[eq.Expr1]; !exists { funcPartials[eq.Expr1] = make(map[interfaces.Expr]*types.Type) } if typ, exists := solved[eq.Expr1]; exists { // wow, now known, so tell the partials! // TODO: this assumes typ is a func, is that guaranteed? if len(typ.Ord) != len(eq.Expr2Ord) { return nil, fmt.Errorf("func arg count differs") } for i, name := range eq.Expr2Ord { expr := eq.Expr2Map[name] // assume key exists funcPartials[eq.Expr1][expr] = typ.Map[typ.Ord[i]] // assume key exists } funcPartials[eq.Expr1][eq.Expr2Out] = typ.Out } // can we add to partials ? for name, y := range eq.Expr2Map { typ, exists := solved[y] if !exists { continue } t, exists := funcPartials[eq.Expr1][y] if !exists { funcPartials[eq.Expr1][y] = typ // learn! continue } if err := t.Cmp(typ); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial func arg: %s", name) } } for _, y := range []interfaces.Expr{eq.Expr2Out} { typ, exists := solved[y] if !exists { continue } t, exists := funcPartials[eq.Expr1][y] if !exists { funcPartials[eq.Expr1][y] = typ // learn! continue } if err := t.Cmp(typ); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial func arg") } } // can we solve anything? var ready = true // assume ready typ := &types.Type{ Kind: types.KindFunc, } typ.Map = make(map[string]*types.Type) for name, y := range eq.Expr2Map { t, exists := funcPartials[eq.Expr1][y] if !exists { ready = false // nope! break } typ.Map[name] = t // build up typ } outTyp, exists := funcPartials[eq.Expr1][eq.Expr2Out] if !exists { ready = false // nope! } else { typ.Out = outTyp // build up typ } if ready { typ.Ord = eq.Expr2Ord // known order if t, exists := solved[eq.Expr1]; exists { if err := t.Cmp(typ); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with func") } } // sub checks for name, y := range eq.Expr2Map { if t, exists := solved[y]; exists { if err := t.Cmp(typ.Map[name]); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with func arg: %s", name) } } } if t, exists := solved[eq.Expr2Out]; exists { if err := t.Cmp(typ.Out); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with func out") } } solved[eq.Expr1] = typ // yay, we learned something! // we should add the other expr's in too... for name, y := range eq.Expr2Map { solved[y] = typ.Map[name] // yay, we learned something! } solved[eq.Expr2Out] = typ.Out // yay, we learned something! used = append(used, i) // mark equality as used up logf("%s: solved func wrap partial", Name) continue } case *EqualityWrapCallInvariant: // the logic is slightly different here, because // we can only go from the func type to the call // type as we can't do the reverse determination if _, exists := callPartials[eq.Expr2Func]; !exists { callPartials[eq.Expr2Func] = make(map[interfaces.Expr]*types.Type) } if typ, exists := solved[eq.Expr2Func]; exists { // wow, now known, so tell the partials! if typ.Kind != types.KindFunc { return nil, fmt.Errorf("expected: %s, got: %s", types.KindFunc, typ.Kind) } callPartials[eq.Expr2Func][eq.Expr1] = typ.Out } typ, ready := callPartials[eq.Expr2Func][eq.Expr1] if ready { // ready to solve if t, exists := solved[eq.Expr1]; exists { if err := t.Cmp(typ); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with call") } } // sub checks if t, exists := solved[eq.Expr2Func]; exists { if err := t.Out.Cmp(typ); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with call out") } } solved[eq.Expr1] = typ // yay, we learned something! used = append(used, i) // mark equality as used up logf("%s: solved call wrap partial", Name) continue } // regular matching case *EqualityInvariant: typ1, exists1 := solved[eq.Expr1] typ2, exists2 := solved[eq.Expr2] if !exists1 && !exists2 { // neither equality connects // can't learn more from this equality yet // nothing is known about either side of it continue } if exists1 && exists2 { // both equalities already connect // both sides are already known-- are they the same? if err := typ1.Cmp(typ2); err != nil { return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with equality") } used = append(used, i) // mark equality as used up logf("%s: duplicate regular equality", Name) continue } if exists1 && !exists2 { // first equality already connects solved[eq.Expr2] = typ1 // yay, we learned something! used = append(used, i) // mark equality as used up logf("%s: solved regular equality", Name) continue } if exists2 && !exists1 { // second equality already connects solved[eq.Expr1] = typ2 // yay, we learned something! used = append(used, i) // mark equality as used up logf("%s: solved regular equality", Name) continue } panic("reached unexpected code") // wtf matching case *AnyInvariant: // this basically ensures that the expr gets solved if _, exists := solved[eq.Expr]; exists { used = append(used, i) // mark equality as used up logf("%s: solved `any` equality", Name) } continue default: return nil, fmt.Errorf("unknown invariant type: %T", x) } } // end inner for loop if len(used) == 0 { // Looks like we're now ambiguous, but if we have any // exclusives, recurse into each possibility to see if // one of them can help solve this! first one wins. Add // in the exclusive to the current set of equalities! // To decrease the problem space, first check if we have // enough solutions to solve everything. If so, then we // don't need to solve any exclusives, and instead we // only need to verify that they don't conflict with the // found solution, which reduces the search space... // Another optimization that can be done before we run // the combinatorial exclusive solver, is we can look at // each exclusive, and remove the ones that already // match, because they don't tell us any new information // that we don't already know. We can also fail early // if anything proves we're already inconsistent. // These two optimizations turn out to use the exact // same algorithm and code, so they're combined here... if isSolved(solved) { logf("%s: solved early with %d exclusives left!", Name, len(exclusives)) } else { logf("%s: unsolved with %d exclusives left!", Name, len(exclusives)) if debug { for i, x := range exclusives { logf("%s: exclusive(%d) left: %s", Name, i, x) } } } // check for consistency against remaining invariants logf("%s: checking for consistency against %d exclusives...", Name, len(exclusives)) done := []int{} for i, invar := range exclusives { // test each one to see if at least one works match, err := invar.Matches(solved) if err != nil { logf("exclusive invar failed: %+v", invar) return nil, errwrap.Wrapf(err, "inconsistent exclusive") } if !match { continue } done = append(done, i) } logf("%s: removed %d consistent exclusives...", Name, len(done)) // Remove exclusives that matched correctly. for i := len(done) - 1; i >= 0; i-- { ix := done[i] // delete index that was marked as done! exclusives = append(exclusives[:ix], exclusives[ix+1:]...) } // If we removed any exclusives, then we can start over. if len(done) > 0 { continue Loop } // what have we learned for sure so far? partialSolutions := []interfaces.Invariant{} logf("%s: %d solved, %d unsolved, and %d exclusives left", Name, len(solved), len(equalities), len(exclusives)) if len(exclusives) > 0 { // FIXME: can we do this loop in a deterministic, sorted way? for expr, typ := range solved { invar := &EqualsInvariant{ Expr: expr, Type: typ, } partialSolutions = append(partialSolutions, invar) logf("%s: solved: %+v", Name, invar) } // also include anything that hasn't been solved yet for _, x := range equalities { partialSolutions = append(partialSolutions, x) logf("%s: unsolved: %+v", Name, x) } } // Lastly, we could loop through each exclusive and see // if it only has a single, easy solution. For example, // if we know that an exclusive is A or B or C, and that // B and C are inconsistent, then we can replace the // exclusive with a single invariant and then run that // through our solver. We can do this iteratively // (recursively for accuracy, but in our case via the // simplify method) so that if we're lucky, we rarely // need to run the raw exclusive combinatorial solver, // which is slow. logf("%s: attempting to simplify %d exclusives...", Name, len(exclusives)) done = []int{} // clear for re-use simplified := []interfaces.Invariant{} for i, invar := range exclusives { // The partialSolutions don't contain any other // exclusives... We look at each individually. s, err := invar.simplify(partialSolutions) // XXX: pass in the solver? if err != nil { logf("exclusive simplification failed: %+v", invar) continue } done = append(done, i) simplified = append(simplified, s...) } logf("%s: simplified %d exclusives...", Name, len(done)) // Remove exclusives that matched correctly. for i := len(done) - 1; i >= 0; i-- { ix := done[i] // delete index that was marked as done! exclusives = append(exclusives[:ix], exclusives[ix+1:]...) } // Add new equalities and exclusives onto state globals. eq, ex, err := process(simplified) // process like at the top if err != nil { // programming error? return nil, errwrap.Wrapf(err, "processing error") } equalities = append(equalities, eq...) exclusives = append(exclusives, ex...) // If we removed any exclusives, then we can start over. if len(done) > 0 { continue Loop } // TODO: We could try and replace our combinatorial // exclusive solver with a real SAT solver algorithm. if !AllowRecursion || len(exclusives) > RecursionInvariantLimit { logf("%s: %d solved, %d unsolved, and %d exclusives left", Name, len(solved), len(equalities), len(exclusives)) for i, eq := range equalities { logf("%s: (%d) equality: %s", Name, i, eq) } for i, ex := range exclusives { logf("%s: (%d) exclusive: %s", Name, i, ex) } // these can be very slow, so try to avoid them return nil, fmt.Errorf("only recursive solutions left") } // let's try each combination, one at a time... for i, ex := range exclusivesProduct(exclusives) { // [][]interfaces.Invariant logf("%s: exclusive(%d):\n%+v", Name, i, ex) // we could waste a lot of cpu, and start from // the beginning, but instead we could use the // list of known solutions found and continue! // TODO: make sure none of these edit partialSolutions recursiveInvariants := []interfaces.Invariant{} recursiveInvariants = append(recursiveInvariants, partialSolutions...) recursiveInvariants = append(recursiveInvariants, ex...) // FIXME: implement RecursionDepthLimit logf("%s: recursing...", Name) solution, err := SimpleInvariantSolver(recursiveInvariants, expected, logf) if err != nil { logf("%s: recursive solution failed: %+v", Name, err) continue // no solution found here... } // solution found! logf("%s: recursive solution found!", Name) return solution, nil } // TODO: print ambiguity return nil, ErrAmbiguous } // delete used equalities, in reverse order to preserve indexing! for i := len(used) - 1; i >= 0; i-- { ix := used[i] // delete index that was marked as used! equalities = append(equalities[:ix], equalities[ix+1:]...) } } // end giant for loop // build final solution solutions := []*EqualsInvariant{} // FIXME: can we do this loop in a deterministic, sorted way? for expr, typ := range solved { invar := &EqualsInvariant{ Expr: expr, Type: typ, } solutions = append(solutions, invar) } return &InvariantSolution{ Solutions: solutions, }, nil }