// Mgmt // Copyright (C) 2013-2024+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Additional permission under GNU GPL version 3 section 7 // // If you modify this program, or any covered work, by linking or combining it // with embedded mcl code and modules (and that the embedded mcl code and // modules which link with this program, contain a copy of their source code in // the authoritative form) containing parts covered by the terms of any other // license, the licensors of this program grant you additional permission to // convey the resulting work. Furthermore, the licensors of this program grant // the original author, James Shubin, additional permission to update this // additional permission if he deems it necessary to achieve the goals of this // additional permission. //go:build !root package util import ( "fmt" "sync" "testing" "time" ) func TestEasyAck1(t *testing.T) { ea := NewEasyAck() ea.Ack() // send the ack select { case <-ea.Wait(): // we got it! case <-time.After(time.Duration(60) * time.Second): t.Errorf("the Ack did not arrive in time") } } func TestEasyAck2(t *testing.T) { ea := NewEasyAck() // never send an ack select { case <-ea.Wait(): // we got it! t.Errorf("the Ack arrived unexpectedly") default: } } func TestEasyAck3(t *testing.T) { ea := NewEasyAck() ea.Ack() // send the ack select { case <-ea.Wait(): // we got it! case <-time.After(time.Duration(60) * time.Second): t.Errorf("the Ack did not arrive in time") } ea = NewEasyAck() // build a new one ea.Ack() // send the ack select { case <-ea.Wait(): // we got it! case <-time.After(time.Duration(60) * time.Second): t.Errorf("the second Ack did not arrive in time") } } func TestEasyAckOnce1(t *testing.T) { eao := NewEasyAckOnce() eao.Ack() eao.Ack() // must not panic eao.Ack() select { case <-eao.Wait(): // we got it! case <-time.After(time.Duration(60) * time.Second): t.Errorf("the Ack did not arrive in time") } } func TestEasyAckOnce2(t *testing.T) { eao := NewEasyAckOnce() // never send an ack select { case <-eao.Wait(): // we got it! t.Errorf("the Ack arrived unexpectedly") default: } } func ExampleSubscribedSignal() { fmt.Println("hello") x := &SubscribedSignal{} wg := &sync.WaitGroup{} ready := &sync.WaitGroup{} // unit1 wg.Add(1) ready.Add(1) go func() { defer wg.Done() ch, ack := x.Subscribe() ready.Done() select { case <-ch: fmt.Println("got signal") } time.Sleep(1 * time.Second) // wait a bit for fun fmt.Println("(1) sending ack...") ack() // must call ack fmt.Println("done sending ack") }() // unit2 wg.Add(1) ready.Add(1) go func() { defer wg.Done() ch, ack := x.Subscribe() ready.Done() select { case <-ch: fmt.Println("got signal") } time.Sleep(2 * time.Second) // wait a bit for fun fmt.Println("(2) sending ack...") ack() // must call ack fmt.Println("done sending ack") }() // unit3 wg.Add(1) ready.Add(1) go func() { defer wg.Done() ch, ack := x.Subscribe() ready.Done() select { case <-ch: fmt.Println("got signal") } time.Sleep(3 * time.Second) // wait a bit for fun fmt.Println("(3) sending ack...") ack() // must call ack fmt.Println("done sending ack") }() ready.Wait() // wait for all subscribes fmt.Println("sending signal...") x.Send() // trigger! time.Sleep(1 * time.Second) // wait a bit so the next print doesn't race fmt.Println("done sending signal") wg.Wait() // wait for everyone to exit fmt.Println("exiting...") // Output: hello // sending signal... // got signal // got signal // got signal // (1) sending ack... // (2) sending ack... // (3) sending ack... // done sending ack // done sending ack // done sending ack // done sending signal // exiting... } func ExampleBoundedReadSemaphore() { fmt.Printf("hello\n") defer fmt.Printf("goodbye\n") wg := &sync.WaitGroup{} defer wg.Wait() ch := make(chan struct{}) // close signal brs := NewBoundedReadSemaphore() wg.Add(1) go func() { defer wg.Done() brs.Lock() defer brs.Unlock() time.Sleep(100 * time.Millisecond) // delay for consistent print fmt.Printf("#1 is in the locked zone\n") time.Sleep(1 * time.Second) }() wg.Add(1) go func() { defer wg.Done() brs.Lock() defer brs.Unlock() time.Sleep(200 * time.Millisecond) // delay for consistent print fmt.Printf("#2 is in the locked zone\n") time.Sleep(2 * time.Second) }() wg.Add(1) go func() { defer wg.Done() brs.Lock() defer brs.Unlock() time.Sleep(300 * time.Millisecond) // delay for consistent print fmt.Printf("#3 is in the locked zone\n") time.Sleep(3 * time.Second) }() wg.Add(1) go func() { defer wg.Done() defer close(ch) // exit signal max := 2 // configure me for { if max == 0 { break } max-- time.Sleep(4 * time.Second) brs.Lock() time.Sleep(100 * time.Millisecond) // delay for consistent print fmt.Printf("#4 is in the locked zone\n") brs.Unlock() time.Sleep(100 * time.Millisecond) // delay for consistent print fmt.Printf("#4 is in the unlocked zone\n") } }() Loop: for { select { case <-ch: // exit signal break Loop case <-brs.Start(): // An empty value is received to start the locking. fmt.Printf("shared mutex start\n") } // subsequent Lock's that happen when at least one Lock is // already held are permitted... time.Sleep(1 * time.Second) // something happens here select { case <-brs.End(): // An empty values is received when the last Unlock happens. fmt.Printf("shared mutex end\n") } } // Output: hello // shared mutex start // #1 is in the locked zone // #2 is in the locked zone // #3 is in the locked zone // shared mutex end // shared mutex start // #4 is in the locked zone // shared mutex end // #4 is in the unlocked zone // shared mutex start // #4 is in the locked zone // shared mutex end // #4 is in the unlocked zone // goodbye }