// Mgmt // Copyright (C) 2013-2016+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . // Package pgraph represents the internal "pointer graph" that we use. package pgraph import ( "fmt" "sort" "sync" "github.com/purpleidea/mgmt/event" "github.com/purpleidea/mgmt/resources" errwrap "github.com/pkg/errors" ) //go:generate stringer -type=graphState -output=graphstate_stringer.go type graphState int const ( graphStateNil graphState = iota graphStateStarting graphStateStarted graphStatePausing graphStatePaused ) // Graph is the graph structure in this library. // The graph abstract data type (ADT) is defined as follows: // * the directed graph arrows point from left to right ( -> ) // * the arrows point away from their dependencies (eg: arrows mean "before") // * IOW, you might see package -> file -> service (where package runs first) // * This is also the direction that the notify should happen in... type Graph struct { Name string Adjacency map[*Vertex]map[*Vertex]*Edge // *Vertex -> *Vertex (edge) state graphState mutex sync.Mutex // used when modifying graph State variable } // Vertex is the primary vertex struct in this library. type Vertex struct { resources.Res // anonymous field timestamp int64 // last updated timestamp ? } // Edge is the primary edge struct in this library. type Edge struct { Name string Notify bool // should we send a refresh notification along this edge? refresh bool // is there a notify pending for the dest vertex ? } // NewGraph builds a new graph. func NewGraph(name string) *Graph { return &Graph{ Name: name, Adjacency: make(map[*Vertex]map[*Vertex]*Edge), state: graphStateNil, } } // NewVertex returns a new graph vertex struct with a contained resource. func NewVertex(r resources.Res) *Vertex { return &Vertex{ Res: r, } } // NewEdge returns a new graph edge struct. func NewEdge(name string) *Edge { return &Edge{ Name: name, } } // Refresh returns the pending refresh status of this edge. func (obj *Edge) Refresh() bool { return obj.refresh } // SetRefresh sets the pending refresh status of this edge. func (obj *Edge) SetRefresh(b bool) { obj.refresh = b } // Copy makes a copy of the graph struct func (g *Graph) Copy() *Graph { newGraph := &Graph{ Name: g.Name, Adjacency: make(map[*Vertex]map[*Vertex]*Edge, len(g.Adjacency)), state: g.state, } for k, v := range g.Adjacency { newGraph.Adjacency[k] = v // copy } return newGraph } // GetName returns the name of the graph. func (g *Graph) GetName() string { return g.Name } // SetName sets the name of the graph. func (g *Graph) SetName(name string) { g.Name = name } // getState returns the state of the graph. This state is used for optimizing // certain algorithms by knowing what part of processing the graph is currently // undergoing. func (g *Graph) getState() graphState { //g.mutex.Lock() //defer g.mutex.Unlock() return g.state } // setState sets the graph state and returns the previous state. func (g *Graph) setState(state graphState) graphState { g.mutex.Lock() defer g.mutex.Unlock() prev := g.getState() g.state = state return prev } // AddVertex uses variadic input to add all listed vertices to the graph func (g *Graph) AddVertex(xv ...*Vertex) { for _, v := range xv { if _, exists := g.Adjacency[v]; !exists { g.Adjacency[v] = make(map[*Vertex]*Edge) } } } // DeleteVertex deletes a particular vertex from the graph. func (g *Graph) DeleteVertex(v *Vertex) { delete(g.Adjacency, v) for k := range g.Adjacency { delete(g.Adjacency[k], v) } } // AddEdge adds a directed edge to the graph from v1 to v2. func (g *Graph) AddEdge(v1, v2 *Vertex, e *Edge) { // NOTE: this doesn't allow more than one edge between two vertexes... g.AddVertex(v1, v2) // supports adding N vertices now // TODO: check if an edge exists to avoid overwriting it! // NOTE: VertexMerge() depends on overwriting it at the moment... g.Adjacency[v1][v2] = e } // DeleteEdge deletes a particular edge from the graph. // FIXME: add test cases func (g *Graph) DeleteEdge(e *Edge) { for v1 := range g.Adjacency { for v2, edge := range g.Adjacency[v1] { if e == edge { delete(g.Adjacency[v1], v2) } } } } // GetVertexMatch searches for an equivalent resource in the graph and returns // the vertex it is found in, or nil if not found. func (g *Graph) GetVertexMatch(obj resources.Res) *Vertex { for k := range g.Adjacency { if k.Res.Compare(obj) { return k } } return nil } // HasVertex returns if the input vertex exists in the graph. func (g *Graph) HasVertex(v *Vertex) bool { if _, exists := g.Adjacency[v]; exists { return true } return false } // NumVertices returns the number of vertices in the graph. func (g *Graph) NumVertices() int { return len(g.Adjacency) } // NumEdges returns the number of edges in the graph. func (g *Graph) NumEdges() int { count := 0 for k := range g.Adjacency { count += len(g.Adjacency[k]) } return count } // GetVertices returns a randomly sorted slice of all vertices in the graph // The order is random, because the map implementation is intentionally so! func (g *Graph) GetVertices() []*Vertex { var vertices []*Vertex for k := range g.Adjacency { vertices = append(vertices, k) } return vertices } // GetVerticesChan returns a channel of all vertices in the graph. func (g *Graph) GetVerticesChan() chan *Vertex { ch := make(chan *Vertex) go func(ch chan *Vertex) { for k := range g.Adjacency { ch <- k } close(ch) }(ch) return ch } // VertexSlice is a linear list of vertices. It can be sorted. type VertexSlice []*Vertex func (vs VertexSlice) Len() int { return len(vs) } func (vs VertexSlice) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] } func (vs VertexSlice) Less(i, j int) bool { return vs[i].String() < vs[j].String() } // GetVerticesSorted returns a sorted slice of all vertices in the graph // The order is sorted by String() to avoid the non-determinism in the map type func (g *Graph) GetVerticesSorted() []*Vertex { var vertices []*Vertex for k := range g.Adjacency { vertices = append(vertices, k) } sort.Sort(VertexSlice(vertices)) // add determinism return vertices } // String makes the graph pretty print. func (g *Graph) String() string { return fmt.Sprintf("Vertices(%d), Edges(%d)", g.NumVertices(), g.NumEdges()) } // String returns the canonical form for a vertex func (v *Vertex) String() string { return fmt.Sprintf("%s[%s]", v.Res.Kind(), v.Res.GetName()) } // IncomingGraphVertices returns an array (slice) of all directed vertices to // vertex v (??? -> v). OKTimestamp should probably use this. func (g *Graph) IncomingGraphVertices(v *Vertex) []*Vertex { // TODO: we might be able to implement this differently by reversing // the Adjacency graph and then looping through it again... var s []*Vertex for k := range g.Adjacency { // reverse paths for w := range g.Adjacency[k] { if w == v { s = append(s, k) } } } return s } // OutgoingGraphVertices returns an array (slice) of all vertices that vertex v // points to (v -> ???). Poke should probably use this. func (g *Graph) OutgoingGraphVertices(v *Vertex) []*Vertex { var s []*Vertex for k := range g.Adjacency[v] { // forward paths s = append(s, k) } return s } // GraphVertices returns an array (slice) of all vertices that connect to vertex v. // This is the union of IncomingGraphVertices and OutgoingGraphVertices. func (g *Graph) GraphVertices(v *Vertex) []*Vertex { var s []*Vertex s = append(s, g.IncomingGraphVertices(v)...) s = append(s, g.OutgoingGraphVertices(v)...) return s } // IncomingGraphEdges returns all of the edges that point to vertex v (??? -> v). func (g *Graph) IncomingGraphEdges(v *Vertex) []*Edge { var edges []*Edge for v1 := range g.Adjacency { // reverse paths for v2, e := range g.Adjacency[v1] { if v2 == v { edges = append(edges, e) } } } return edges } // OutgoingGraphEdges returns all of the edges that point from vertex v (v -> ???). func (g *Graph) OutgoingGraphEdges(v *Vertex) []*Edge { var edges []*Edge for _, e := range g.Adjacency[v] { // forward paths edges = append(edges, e) } return edges } // GraphEdges returns an array (slice) of all edges that connect to vertex v. // This is the union of IncomingGraphEdges and OutgoingGraphEdges. func (g *Graph) GraphEdges(v *Vertex) []*Edge { var edges []*Edge edges = append(edges, g.IncomingGraphEdges(v)...) edges = append(edges, g.OutgoingGraphEdges(v)...) return edges } // DFS returns a depth first search for the graph, starting at the input vertex. func (g *Graph) DFS(start *Vertex) []*Vertex { var d []*Vertex // discovered var s []*Vertex // stack if _, exists := g.Adjacency[start]; !exists { return nil // TODO: error } v := start s = append(s, v) for len(s) > 0 { v, s = s[len(s)-1], s[:len(s)-1] // s.pop() if !VertexContains(v, d) { // if not discovered d = append(d, v) // label as discovered for _, w := range g.GraphVertices(v) { s = append(s, w) } } } return d } // FilterGraph builds a new graph containing only vertices from the list. func (g *Graph) FilterGraph(name string, vertices []*Vertex) *Graph { newgraph := NewGraph(name) for k1, x := range g.Adjacency { for k2, e := range x { //log.Printf("Filter: %s -> %s # %s", k1.Name, k2.Name, e.Name) if VertexContains(k1, vertices) || VertexContains(k2, vertices) { newgraph.AddEdge(k1, k2, e) } } } return newgraph } // GetDisconnectedGraphs returns a channel containing the N disconnected graphs // in our main graph. We can then process each of these in parallel. func (g *Graph) GetDisconnectedGraphs() chan *Graph { ch := make(chan *Graph) go func() { var start *Vertex var d []*Vertex // discovered c := g.NumVertices() for len(d) < c { // get an undiscovered vertex to start from for _, s := range g.GetVertices() { if !VertexContains(s, d) { start = s } } // dfs through the graph dfs := g.DFS(start) // filter all the collected elements into a new graph newgraph := g.FilterGraph(g.Name, dfs) // add number of elements found to found variable d = append(d, dfs...) // extend // return this new graph to the channel ch <- newgraph // if we've found all the elements, then we're done // otherwise loop through to continue... } close(ch) }() return ch } // InDegree returns the count of vertices that point to me in one big lookup map. func (g *Graph) InDegree() map[*Vertex]int { result := make(map[*Vertex]int) for k := range g.Adjacency { result[k] = 0 // initialize } for k := range g.Adjacency { for z := range g.Adjacency[k] { result[z]++ } } return result } // OutDegree returns the count of vertices that point away in one big lookup map. func (g *Graph) OutDegree() map[*Vertex]int { result := make(map[*Vertex]int) for k := range g.Adjacency { result[k] = 0 // initialize for range g.Adjacency[k] { result[k]++ } } return result } // TopologicalSort returns the sort of graph vertices in that order. // based on descriptions and code from wikipedia and rosetta code // TODO: add memoization, and cache invalidation to speed this up :) func (g *Graph) TopologicalSort() ([]*Vertex, error) { // kahn's algorithm var L []*Vertex // empty list that will contain the sorted elements var S []*Vertex // set of all nodes with no incoming edges remaining := make(map[*Vertex]int) // amount of edges remaining for v, d := range g.InDegree() { if d == 0 { // accumulate set of all nodes with no incoming edges S = append(S, v) } else { // initialize remaining edge count from indegree remaining[v] = d } } for len(S) > 0 { last := len(S) - 1 // remove a node v from S v := S[last] S = S[:last] L = append(L, v) // add v to tail of L for n := range g.Adjacency[v] { // for each node n remaining in the graph, consume from // remaining, so for remaining[n] > 0 if remaining[n] > 0 { remaining[n]-- // remove edge from the graph if remaining[n] == 0 { // if n has no other incoming edges S = append(S, n) // insert n into S } } } } // if graph has edges, eg if any value in rem is > 0 for c, in := range remaining { if in > 0 { for n := range g.Adjacency[c] { if remaining[n] > 0 { return nil, fmt.Errorf("Not a dag!") } } } } return L, nil } // Reachability finds the shortest path in a DAG from a to b, and returns the // slice of vertices that matched this particular path including both a and b. // It returns nil if a or b is nil, and returns empty list if no path is found. // Since there could be more than one possible result for this operation, we // arbitrarily choose one of the shortest possible. As a result, this should // actually return a tree if we cared about correctness. // This operates by a recursive algorithm; a more efficient version is likely. // If you don't give this function a DAG, you might cause infinite recursion! func (g *Graph) Reachability(a, b *Vertex) []*Vertex { if a == nil || b == nil { return nil } vertices := g.OutgoingGraphVertices(a) // what points away from a ? if len(vertices) == 0 { return []*Vertex{} // nope } if VertexContains(b, vertices) { return []*Vertex{a, b} // found } // TODO: parallelize this with go routines? var collected = make([][]*Vertex, len(vertices)) pick := -1 for i, v := range vertices { collected[i] = g.Reachability(v, b) // find b by recursion if l := len(collected[i]); l > 0 { // pick shortest path // TODO: technically i should return a tree if pick < 0 || l < len(collected[pick]) { pick = i } } } if pick < 0 { return []*Vertex{} // nope } result := []*Vertex{a} // tack on a result = append(result, collected[pick]...) return result } // GraphSync updates the oldGraph so that it matches the newGraph receiver. It // leaves identical elements alone so that they don't need to be refreshed. // FIXME: add test cases func (g *Graph) GraphSync(oldGraph *Graph) (*Graph, error) { if oldGraph == nil { oldGraph = NewGraph(g.GetName()) // copy over the name } oldGraph.SetName(g.GetName()) // overwrite the name var lookup = make(map[*Vertex]*Vertex) var vertexKeep []*Vertex // list of vertices which are the same in new graph var edgeKeep []*Edge // list of vertices which are the same in new graph for v := range g.Adjacency { // loop through the vertices (resources) res := v.Res // resource vertex := oldGraph.GetVertexMatch(res) if vertex == nil { // no match found if err := res.Init(); err != nil { return nil, errwrap.Wrapf(err, "could not Init() resource") } vertex = NewVertex(res) oldGraph.AddVertex(vertex) // call standalone in case not part of an edge } lookup[v] = vertex // used for constructing edges vertexKeep = append(vertexKeep, vertex) // append } // get rid of any vertices we shouldn't keep (that aren't in new graph) for v := range oldGraph.Adjacency { if !VertexContains(v, vertexKeep) { // wait for exit before starting new graph! v.SendEvent(event.EventExit, true, false) oldGraph.DeleteVertex(v) } } // compare edges for v1 := range g.Adjacency { // loop through the vertices (resources) for v2, e := range g.Adjacency[v1] { // we have an edge! // lookup vertices (these should exist now) //res1 := v1.Res // resource //res2 := v2.Res //vertex1 := oldGraph.GetVertexMatch(res1) //vertex2 := oldGraph.GetVertexMatch(res2) vertex1, exists1 := lookup[v1] vertex2, exists2 := lookup[v2] if !exists1 || !exists2 { // no match found, bug? //if vertex1 == nil || vertex2 == nil { // no match found return nil, fmt.Errorf("New vertices weren't found!") // programming error } edge, exists := oldGraph.Adjacency[vertex1][vertex2] if !exists || edge.Name != e.Name { // TODO: edgeCmp edge = e // use or overwrite edge } oldGraph.Adjacency[vertex1][vertex2] = edge // store it (AddEdge) edgeKeep = append(edgeKeep, edge) // mark as saved } } // delete unused edges for v1 := range oldGraph.Adjacency { for _, e := range oldGraph.Adjacency[v1] { // we have an edge! if !EdgeContains(e, edgeKeep) { oldGraph.DeleteEdge(e) } } } return oldGraph, nil } // GraphMetas returns a list of pointers to each of the resource MetaParams. func (g *Graph) GraphMetas() []*resources.MetaParams { metas := []*resources.MetaParams{} for v := range g.Adjacency { // loop through the vertices (resources)) res := v.Res // resource meta := res.Meta() metas = append(metas, meta) } return metas } // AssociateData associates some data with the object in the graph in question. func (g *Graph) AssociateData(data *resources.Data) { for k := range g.Adjacency { k.Res.AssociateData(data) } } // VertexContains is an "in array" function to test for a vertex in a slice of vertices. func VertexContains(needle *Vertex, haystack []*Vertex) bool { for _, v := range haystack { if needle == v { return true } } return false } // EdgeContains is an "in array" function to test for an edge in a slice of edges. func EdgeContains(needle *Edge, haystack []*Edge) bool { for _, v := range haystack { if needle == v { return true } } return false } // Reverse reverses a list of vertices. func Reverse(vs []*Vertex) []*Vertex { //var out []*Vertex // XXX: golint suggests, but it fails testing out := make([]*Vertex, 0) // empty list l := len(vs) for i := range vs { out = append(out, vs[l-i-1]) } return out }