// Mgmt // Copyright (C) 2013-2024+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . package funcs import ( "context" "fmt" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // StructLookupOptionalFuncName is the name this function is registered // as. This starts with an underscore so that it cannot be used from the // lexer. StructLookupOptionalFuncName = "_struct_lookup_optional" // arg names... structLookupOptionalArgNameStruct = "struct" structLookupOptionalArgNameField = "field" structLookupOptionalArgNameOptional = "optional" ) func init() { Register(StructLookupOptionalFuncName, func() interfaces.Func { return &StructLookupOptionalFunc{} }) // must register the func and name } var _ interfaces.PolyFunc = &StructLookupOptionalFunc{} // ensure it meets this expectation // StructLookupOptionalFunc is a struct field lookup function. It does a special // trick in that it will unify on a struct that doesn't have the specified field // in it, but in that case, it will always return the optional value. This is a // bit different from the "default" mechanism that is used by list and map // lookup functions. type StructLookupOptionalFunc struct { Type *types.Type // Kind == Struct, that is used as the struct we lookup Out *types.Type // type of field we're extracting (also the type of optional) init *interfaces.Init last types.Value // last value received to use for diff field string result types.Value // last calculated output } // String returns a simple name for this function. This is needed so this struct // can satisfy the pgraph.Vertex interface. func (obj *StructLookupOptionalFunc) String() string { return StructLookupOptionalFuncName } // ArgGen returns the Nth arg name for this function. func (obj *StructLookupOptionalFunc) ArgGen(index int) (string, error) { seq := []string{structLookupOptionalArgNameStruct, structLookupOptionalArgNameField, structLookupOptionalArgNameOptional} if l := len(seq); index >= l { return "", fmt.Errorf("index %d exceeds arg length of %d", index, l) } return seq[index], nil } // Unify returns the list of invariants that this func produces. func (obj *StructLookupOptionalFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) { var invariants []interfaces.Invariant var invar interfaces.Invariant // func(struct T1, field str, optional T2) T2 structName, err := obj.ArgGen(0) if err != nil { return nil, err } fieldName, err := obj.ArgGen(1) if err != nil { return nil, err } optionalName, err := obj.ArgGen(2) if err != nil { return nil, err } dummyStruct := &interfaces.ExprAny{} // corresponds to the struct type dummyField := &interfaces.ExprAny{} // corresponds to the field type dummyOptional := &interfaces.ExprAny{} // corresponds to the optional type dummyOut := &interfaces.ExprAny{} // corresponds to the out string // field arg type of string invar = &interfaces.EqualsInvariant{ Expr: dummyField, Type: types.TypeStr, } invariants = append(invariants, invar) // XXX: we could use this relationship *if* our solver could understand // different fields, and partial struct matches. I guess we'll leave it // for another day! //mapped := make(map[string]interfaces.Expr) //ordered := []string{???} //mapped[???] = dummyField //invar = &interfaces.EqualityWrapStructInvariant{ // Expr1: dummyStruct, // Expr2Map: mapped, // Expr2Ord: ordered, //} //invariants = append(invariants, invar) // These two types should be identical. This is the safest approach. In // the case where the struct field is missing, then this should be true, // and when it is present, we'll never use the optional value, but we // can still enforce it's the same type. invar = &interfaces.EqualityInvariant{ Expr1: dummyOptional, Expr2: dummyOut, } invariants = append(invariants, invar) // full function mapped := make(map[string]interfaces.Expr) ordered := []string{structName, fieldName, optionalName} mapped[structName] = dummyStruct mapped[fieldName] = dummyField mapped[optionalName] = dummyOptional invar = &interfaces.EqualityWrapFuncInvariant{ Expr1: expr, // maps directly to us! Expr2Map: mapped, Expr2Ord: ordered, Expr2Out: dummyOut, } invariants = append(invariants, invar) // generator function fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) { for _, invariant := range fnInvariants { // search for this special type of invariant cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant) if !ok { continue } // did we find the mapping from us to ExprCall ? if cfavInvar.Func != expr { continue } // cfavInvar.Expr is the ExprCall! (the return pointer) // cfavInvar.Args are the args that ExprCall uses! if l := len(cfavInvar.Args); l != 3 { return nil, fmt.Errorf("unable to build function with %d args", l) } var invariants []interfaces.Invariant var invar interfaces.Invariant // add the relationship to the returned value invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Expr, Expr2: dummyOut, } invariants = append(invariants, invar) // add the relationships to the called args invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[0], Expr2: dummyStruct, } invariants = append(invariants, invar) invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[1], Expr2: dummyField, } invariants = append(invariants, invar) invar = &interfaces.EqualityInvariant{ Expr1: cfavInvar.Args[2], Expr2: dummyOptional, } invariants = append(invariants, invar) // second arg must be a string invar = &interfaces.EqualsInvariant{ Expr: cfavInvar.Args[1], Type: types.TypeStr, } invariants = append(invariants, invar) // Not necessary for the field to be known or be static! var field string value, err := cfavInvar.Args[1].Value() // is it known? if err == nil { if k := value.Type().Kind; k != types.KindStr { return nil, fmt.Errorf("unable to build function with 1st arg of kind: %s", k) } field = value.Str() // must not panic } // If we figure out both of these types, we'll know the var t1 *types.Type // struct type var t2 *types.Type // optional / return type // validateArg0 checks: struct T1 validateArg0 := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } // we happen to have a struct! if k := typ.Kind; k != types.KindStruct { return fmt.Errorf("unable to build function with 0th arg of kind: %s", k) } // check both Ord and Map for safety found := false for _, s := range typ.Ord { if s == field { found = true break } } t, exists := typ.Map[field] // type found is T2 if field != "" { if !exists || !found { //fmt.Printf("might be using optional arg, struct is missing field: %s\n", field) } else if err := t.Cmp(t2); t2 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } // learn! t2 = t } if err := typ.Cmp(t1); t1 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } // learn! t1 = typ return nil } validateArg2OrOut := func(typ *types.Type) error { if typ == nil { // unknown so far return nil } if err := typ.Cmp(t2); t2 != nil && err != nil { return errwrap.Wrapf(err, "input type was inconsistent") } // learn! t2 = typ return nil } if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known? // this sets t1 (and sometimes t2) on success if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type // this sets t1 (and sometimes t2) on success if it learned if err := validateArg0(typ); err != nil { return nil, errwrap.Wrapf(err, "first struct arg type is inconsistent") } } if typ, err := cfavInvar.Args[2].Type(); err == nil { // is it known? // this sets t2 on success if it learned if err := validateArg2OrOut(typ); err != nil { return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Args[2]]; exists { // alternate way to lookup type // this sets t2 on success if it learned if err := validateArg2OrOut(typ); err != nil { return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent") } } // look at the return type too (if known) if typ, err := cfavInvar.Expr.Type(); err == nil { // is it known? // this sets t2 on success if it learned if err := validateArg2OrOut(typ); err != nil { return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent") } } if typ, exists := solved[cfavInvar.Expr]; exists { // alternate way to lookup type // this sets t2 on success if it learned if err := validateArg2OrOut(typ); err != nil { return nil, errwrap.Wrapf(err, "third struct arg type is inconsistent") } } // XXX: if the struct type/value isn't know statically? if t1 != nil { invar = &interfaces.EqualsInvariant{ Expr: dummyStruct, Type: t1, } invariants = append(invariants, invar) // We know *some* information about the struct! // Let's hope the unusedField expr won't trip // up the solver... mapped := make(map[string]interfaces.Expr) ordered := []string{} for _, x := range t1.Ord { // We *don't* need to solve unusedField unusedField := &interfaces.ExprAny{} mapped[x] = unusedField if x == field { // the one we care about mapped[x] = dummyOut } ordered = append(ordered, x) } // We map to dummyOut which is the return type // and has the same type of the field we want! mapped[field] = dummyOut // redundant =D invar = &interfaces.EqualityWrapStructInvariant{ Expr1: dummyStruct, Expr2Map: mapped, Expr2Ord: ordered, } // We only want to add this weird thing if the // field actually exists. Otherwise ignore it. if _, exists := t1.Map[field]; field != "" && exists { invariants = append(invariants, invar) } } if t2 != nil { invar = &interfaces.EqualsInvariant{ Expr: dummyOptional, Type: t2, } invariants = append(invariants, invar) invar = &interfaces.EqualsInvariant{ Expr: dummyOut, Type: t2, } invariants = append(invariants, invar) } // XXX: if t1 or t2 are missing, we could also return a // new generator for later if we learn new information, // but we'd have to be careful to not do it infinitely. // TODO: do we return this relationship with ExprCall? invar = &interfaces.EqualityWrapCallInvariant{ // TODO: should Expr1 and Expr2 be reversed??? Expr1: cfavInvar.Expr, //Expr2Func: cfavInvar.Func, // same as below Expr2Func: expr, } invariants = append(invariants, invar) // TODO: are there any other invariants we should build? return invariants, nil // generator return } // We couldn't tell the solver anything it didn't already know! return nil, fmt.Errorf("couldn't generate new invariants") } invar = &interfaces.GeneratorInvariant{ Func: fn, } invariants = append(invariants, invar) return invariants, nil } // Build is run to turn the polymorphic, undetermined function, into the // specific statically typed version. It is usually run after Unify completes, // and must be run before Info() and any of the other Func interface methods are // used. This function is idempotent, as long as the arg isn't changed between // runs. func (obj *StructLookupOptionalFunc) Build(typ *types.Type) (*types.Type, error) { // typ is the KindFunc signature we're trying to build... if typ.Kind != types.KindFunc { return nil, fmt.Errorf("input type must be of kind func") } if len(typ.Ord) != 3 { return nil, fmt.Errorf("the structlookup function needs exactly three args") } if typ.Out == nil { return nil, fmt.Errorf("return type of function must be specified") } if typ.Map == nil { return nil, fmt.Errorf("invalid input type") } tStruct, exists := typ.Map[typ.Ord[0]] if !exists || tStruct == nil { return nil, fmt.Errorf("first arg must be specified") } tField, exists := typ.Map[typ.Ord[1]] if !exists || tField == nil { return nil, fmt.Errorf("second arg must be specified") } if err := tField.Cmp(types.TypeStr); err != nil { return nil, errwrap.Wrapf(err, "field must be an str") } tOptional, exists := typ.Map[typ.Ord[2]] if !exists || tOptional == nil { return nil, fmt.Errorf("third arg must be specified") } if err := tOptional.Cmp(typ.Out); err != nil { return nil, errwrap.Wrapf(err, "optional arg must match return type") } // NOTE: We actually don't know which field this is, only its type! we // could have cached the discovered field during Polymorphisms(), but it // turns out it's not actually necessary for us to know it to build the // struct. obj.Type = tStruct // struct type obj.Out = typ.Out // type of return value return obj.sig(), nil } // Validate tells us if the input struct takes a valid form. func (obj *StructLookupOptionalFunc) Validate() error { if obj.Type == nil { // build must be run first return fmt.Errorf("type is still unspecified") } if obj.Type.Kind != types.KindStruct { return fmt.Errorf("type must be a kind of struct") } if obj.Out == nil { return fmt.Errorf("return type must be specified") } // TODO: can we do better and validate more aspects here? return nil } // Info returns some static info about itself. Build must be called before this // will return correct data. func (obj *StructLookupOptionalFunc) Info() *interfaces.Info { var sig *types.Type if obj.Type != nil { // don't panic if called speculatively // TODO: can obj.Out be nil (a partial) ? sig = obj.sig() // helper } return &interfaces.Info{ Pure: true, Memo: false, Sig: sig, // func kind Err: obj.Validate(), } } // helper func (obj *StructLookupOptionalFunc) sig() *types.Type { return types.NewType(fmt.Sprintf("func(%s %s, %s str, %s %s) %s", structLookupOptionalArgNameStruct, obj.Type.String(), structLookupOptionalArgNameField, structLookupOptionalArgNameOptional, obj.Out.String(), obj.Out.String())) } // Init runs some startup code for this function. func (obj *StructLookupOptionalFunc) Init(init *interfaces.Init) error { obj.init = init return nil } // Stream returns the changing values that this func has over time. func (obj *StructLookupOptionalFunc) Stream(ctx context.Context) error { defer close(obj.init.Output) // the sender closes for { select { case input, ok := <-obj.init.Input: if !ok { return nil // can't output any more } //if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil { // return errwrap.Wrapf(err, "wrong function input") //} if obj.last != nil && input.Cmp(obj.last) == nil { continue // value didn't change, skip it } obj.last = input // store for next st := (input.Struct()[structLookupOptionalArgNameStruct]).(*types.StructValue) field := input.Struct()[structLookupOptionalArgNameField].Str() optional := input.Struct()[structLookupOptionalArgNameOptional] if field == "" { return fmt.Errorf("received empty field") } if obj.field == "" { obj.field = field // store first field } if field != obj.field { return fmt.Errorf("input field changed from: `%s`, to: `%s`", obj.field, field) } // We know the result of this lookup statically at // compile time, but for simplicity we check each time // here anyways. Maybe one day there will be a fancy // reason why this might vary over time. var result types.Value val, exists := st.Lookup(field) if exists { result = val } else { result = optional } // if previous input was `2 + 4`, but now it // changed to `1 + 5`, the result is still the // same, so we can skip sending an update... if obj.result != nil && result.Cmp(obj.result) == nil { continue // result didn't change } obj.result = result // store new result case <-ctx.Done(): return nil } select { case obj.init.Output <- obj.result: // send case <-ctx.Done(): return nil } } }