// Mgmt // Copyright (C) 2013-2024+ James Shubin and the project contributors // Written by James Shubin and the project contributors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Additional permission under GNU GPL version 3 section 7 // // If you modify this program, or any covered work, by linking or combining it // with embedded mcl code and modules (and that the embedded mcl code and // modules which link with this program, contain a copy of their source code in // the authoritative form) containing parts covered by the terms of any other // license, the licensors of this program grant you additional permission to // convey the resulting work. Furthermore, the licensors of this program grant // the original author, James Shubin, additional permission to update this // additional permission if he deems it necessary to achieve the goals of this // additional permission. package structs import ( "context" "fmt" "github.com/purpleidea/mgmt/lang/interfaces" "github.com/purpleidea/mgmt/lang/types" "github.com/purpleidea/mgmt/util/errwrap" ) const ( // CompositeFuncName is the unique name identifier for this function. CompositeFuncName = "composite" ) // CompositeFunc is a function that passes through the value it receives. It is // used to take a series of inputs to a list, map or struct, and return that // value as a stream that depends on those inputs. It helps the list, map, and // struct's that fulfill the Expr interface but expressing a Func method. type CompositeFunc struct { Type *types.Type // this is the type of the composite value we hold Len int // length of list or map (if used) init *interfaces.Init last types.Value // last value received to use for diff result types.Value // last calculated output } // String returns a simple name for this function. This is needed so this struct // can satisfy the pgraph.Vertex interface. func (obj *CompositeFunc) String() string { if obj.Type != nil { return fmt.Sprintf("%s: %s", CompositeFuncName, obj.Type.String()) } return CompositeFuncName } // Validate makes sure we've built our struct properly. func (obj *CompositeFunc) Validate() error { if obj.Type == nil { return fmt.Errorf("must specify a type") } switch obj.Type.Kind { case types.KindList: fallthrough case types.KindMap: fallthrough case types.KindStruct: return nil } return fmt.Errorf("can't compose type `%s`", obj.Type.String()) } // Info returns some static info about itself. func (obj *CompositeFunc) Info() *interfaces.Info { typ := &types.Type{ Kind: types.KindFunc, // function type Map: make(map[string]*types.Type), Ord: []string{}, Out: obj.Type, // this is the output type for the expression } switch obj.Type.Kind { case types.KindList: // wrapped in a struct with `length` many keys for i := 0; i < obj.Len; i++ { // FIXME: should we .Title the fields or add a prefix? key := fmt.Sprintf("%d", i) typ.Map[key] = obj.Type.Val // type of each list element typ.Ord = append(typ.Ord, key) } case types.KindMap: // wrapped in a struct with named keys for i := 0; i < obj.Len; i++ { // each key and val has a value to pass in, and we have // a known number of kv pairs, so we pass each in with // the index of the kv pair as found in the parse order key1 := fmt.Sprintf("key:%d", i) typ.Map[key1] = obj.Type.Key // type of each map key typ.Ord = append(typ.Ord, key1) key2 := fmt.Sprintf("val:%d", i) typ.Map[key2] = obj.Type.Val // type of each map val typ.Ord = append(typ.Ord, key2) } case types.KindStruct: // map it directly, each key is the right input! typ.Map = obj.Type.Map typ.Ord = obj.Type.Ord } return &interfaces.Info{ Pure: true, Memo: false, // TODO: ??? Sig: typ, Err: obj.Validate(), } } // Init runs some startup code for this composite function. func (obj *CompositeFunc) Init(init *interfaces.Init) error { obj.init = init return nil } // Stream takes an input struct in the format as described in the Func and Graph // methods of the Expr, and returns the actual expected value as a stream based // on the changing inputs to that value. func (obj *CompositeFunc) Stream(ctx context.Context) error { defer close(obj.init.Output) // the sender closes for { select { case input, ok := <-obj.init.Input: if !ok { obj.init.Input = nil // don't infinite loop back if obj.last == nil { // FIXME: can we get an empty struct? result := obj.Type.New() // new list or map obj.result = result select { case obj.init.Output <- result: // send // pass case <-ctx.Done(): return nil } } return nil // can't output any more } //if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil { // return errwrap.Wrapf(err, "wrong function input") //} if obj.last != nil && input.Cmp(obj.last) == nil { continue // value didn't change, skip it } obj.last = input // store for next var result types.Value switch obj.Type.Kind { case types.KindList: // XXX: this duplicates the same logic that exists in Value() as implemented on *ExprList // XXX: have this call that function to get the result? result = obj.Type.New() // new list input := input.(*types.StructValue) // must be! for i := 0; i < obj.Len; i++ { // build it value, exists := input.Lookup(fmt.Sprintf("%d", i)) // argNames as integers! if !exists { return fmt.Errorf("missing input index `%d`", i) } if err := result.(*types.ListValue).Add(value); err != nil { return errwrap.Wrapf(err, "can't build list index `%d`", i) } } case types.KindMap: result = obj.Type.New() // new map input := (input.(*types.StructValue)).Struct() // must be! l := len(input) if l%2 != 0 { return fmt.Errorf("expected even number of inputs for a map, got: %d", l) } // each key should be named `key:0`, `val:0`, `key:1`, `val:1`, // and so on for as many key pairs as we have... remember that // the number of keys pairs is known statically in this case! for i := 0; i < l/2; i++ { // build it key, exists := input[fmt.Sprintf("key:%d", i)] if !exists { return fmt.Errorf("missing input key `key:%d`", i) } val, exists := input[fmt.Sprintf("val:%d", i)] if !exists { return fmt.Errorf("missing input val `val:%d`", i) } if err := result.(*types.MapValue).Add(key, val); err != nil { return errwrap.Wrapf(err, "can't build map key with index `%d`", i) } } case types.KindStruct: result = input } // skip sending an update... if obj.result != nil && result.Cmp(obj.result) == nil { continue // result didn't change } obj.result = result // store new result case <-ctx.Done(): return nil } select { case obj.init.Output <- obj.result: // send // pass case <-ctx.Done(): return nil } } }