It's common in many concurrent engines to have a situation where we
collect errors on shutdown. Errors can either because a context closed,
or because some engine error happened. The latter, can also cause the
former, leading to a list of returned errors. In these scenarios, we
want to filter out all the secondary context errors, unless that's all
that's there. This provides a helper function to do so.
Instead of constantly making these updates, let's just remove the year
since things are stored in git anyways, and this is not an actual modern
legal risk anymore.
With the recent merging of embedded package imports and the entry CLI
package, it is now possible for users to build in mcl code into a single
binary. This additional permission makes it explicitly clear that this
is permitted to make it easier for those users. The condition is phrased
so that the terms can be "patched" by the original author if it's
necessary for the project. For example, if the name of the language
(mcl) changes, has a differently named new version, someone finds a
phrasing improvement or a legal loophole, or for some other
reasonable circumstance. Now go write some beautiful embedded tools!
This adds a giant missing piece of the language: proper function values!
It is lovely to now understand why early programming language designers
didn't implement these, but a joy to now reap the benefits of them. In
adding these, many other changes had to be made to get them to "fit"
correctly. This improved the code and fixed a number of bugs.
Unfortunately this touched many areas of the code, and since I was
learning how to do all of this for the first time, I've squashed most of
my work into a single commit. Some more information:
* This adds over 70 new tests to verify the new functionality.
* Functions, global variables, and classes can all be implemented
natively in mcl and built into core packages.
* A new compiler step called "Ordering" was added. It is called by the
SetScope step, and determines statement ordering and shadowing
precedence formally. It helped remove at least one bug and provided the
additional analysis required to properly capture variables when
implementing function generators and closures.
* The type unification code was improved to handle the new cases.
* Light copying of Node's allowed our function graphs to be more optimal
and share common vertices and edges. For example, if two different
closures capture a variable $x, they'll both use the same copy when
running the function, since the compiler can prove if they're identical.
* Some areas still need improvements, but this is ready for mainstream
testing and use!
Simplify working with errors across our code base. Instead of constantly
importing the necessary error helpers, assemble them all into one
package and import and use that as needed.