This simplifies the API by passing through the filesystem so that
function signatures don't need to be as complicated, and furthermore use
that consistently throughout.
Some of our special tests can only be run once per `go test` invocation.
That is, using the test -count flag will cause a guaranteed failure
since we depend on a global being initialized only once as part of that
test.
This adds a per-test config option so that a user can specify to never
run a particular test more than once. This lets us continue to use the
-count flag with the test suite, without it causing some tests to fail.
We've previously not received a value from within an autogrouped
resource. It turns out this would be quite useful, and so this patch
implements the additional plumbing and testing so that this works!
Testing that an autogrouped resource can still send values has not been
done at this time.
This expands the Local API with the first (and in theory, only ever) API
for reading and writing simple values. This is a coordination point for
resources and functions to share things directly.
This is a new API that is similar in spirit and plumbing to the World
API, but it intended for all local machine operations and will likely
only ever have one implementation.
It's valuable to check your runtime values and to shut down the entire
engine in case something doesn't match. This patch adds some magic
plumbing to support a "panic" mechanism.
A new "panic" statement gets transparently converted into a panic
function and panic resource. The former errors if the input is not
empty. The latter must be present to consume the value, but doesn't
actually do anything.
We run the resource engine once and look at its values. This is useful
for testing send/recv in particular.
The converger code is probably not working properly. We'll look into
that subsequently if this gets used a lot.
This lets us add a resource that has an implementation with a field
whose type is determined at compile time. This let's us write more
flexible resources.
What's missing is additional type checking so that we guarantee that a
specific resource doesn't change types during run-time.
This ports TestAstFunc2 from our home-grown content storage system to
the txtar package. Since a single file can be used to represent the
entire folder hierarchy, this makes it much easier to see and edit
tests.
This removes the calling of SetValue from the engine, and instead
replaces it with the Table() API. The downside is that this is likely
slower, and the current API with locking being exposed publicly is kind
of ugly. The upside is that this might make building the new engine
easier.
Future versions might remove locking from the API if we can avoid making
any accesses to expressions. Currently this happens within Logf/SafeLogf
which is our main (only?) usage at the moment. Logging could become
smarter perhaps. Alternatively, we might pass in a "setter" function
that gets called safely from within the engine. This could wrap SetValue
and the locking functions wouldn't be part of the public API.
This is a giant refactor to split the giant lang package into many
subpackages. The most difficult piece was figuring out how to extract
the extra ast structs into their own package, because they needed to
call two functions which also needed to import the ast.
The solution was to separate out those functions into their own
packages, and to pass them into the ast at the root when they're needed,
and to let the relevant ast portions call a handle.
This isn't terribly ugly because we already had a giant data struct
woven through the ast.
The bad part is rebasing any WIP work on top of this.
This makes the tests easier to read and modify without having out of
order numbers. When writing the tests, you'll remember more easily which
section you're erroring in too!
The original string interpolation was based on hil which didn't allow
proper escaping, since they used a different escape pattern. Secondly,
the golang Unquote function didn't deal with the variable substitution,
which meant it had to be performed in a second step.
Most importantly, because we did this partial job in Unquote (the fact
that is strips the leading and trailing quotes tricked me into thinking
I was done with interpolation!) it was impossible to remedy the
remaining parts in a second pass with hil. Both operations needs to be
done in a single step. This is logical when you aren't tunnel visioned.
This patch replaces both of these so that string interpolation works
properly. This removes the ability to allow inline function calls in a
string, however this was an incidental feature, and it's not clear that
having it is a good idea. It also requires you wrap the var name with
curly braces. (They are not optional.)
This comes with a load of tests, but I think I got some of it wrong,
since I'm quite new at ragel. If you find something, please say so =D In
any case, this is much better than the original hil implementation, and
easy for a new contributor to patch to make the necessary fixes.
Struct types with duplicate fields are invalid types and weren't caught
by the parser. This fixes the issue and adds some associated tests. It
also checks and tests for duplicate struct value field names.
As a technical side-note, this doesn't change the lang/types/ functions
to remove panics-- the signatures are simplified to make their use
simple, and we intentionally panic if they're used incorrectly. In this
case, one was being used without having previously validated the input.
Thanks to Patrick Meyer for finding this issue via fuzzing!
Since we focus on safety, it would be nice to reduce the chance of any
runtime errors if we made a typo for a resource parameter. With this
patch, each resource can export constants into the global namespace so
that typos would cause a compile error.
Of course in the future if we had a more advanced type system, then we
could support precise types for each individual resource param, but in
an attempt to keep things simple, we'll leave that for another day. It
would add complexity too if we ever wanted to store a parameter
externally.
Lastly, we might consider adding "special case" parsing so that directly
specified fields would parse intelligently. For example, we could allow:
file "/tmp/hello" {
state => exists, # magic sugar!
}
This isn't supported for now, but if it works after all the other parser
changes have been made, it might be something to consider.
This should give us options as to how a function should interact with an
FS. I feel like it's cleaner to go through the World API, and passing in
the FsURI lets us do that, but I passed in the Fs at the same time in
case it's useful for some reason. I think using it is a boundary
violation, but it's just a hunch. Does anything break when we move from
one deploy to the next?