This is a helper function that can generate a bunch of functions from a
struct type. This is most useful when using a CLI args struct for
command line parsing and then storing the values as functions.
An alternative version of this might choose to return all of the values
as a single giant struct.
If we want to use special struct types from our CLI parser, we also need
to be able to both identify, and convert them to our language type and
value representations.
For as long as we don't have fancier types in our language, these should
both be strings. Tests and extensions to these additions are welcome!
If we're importing an embedded module, we need to also include any
possible system scope imports (like functions) that might be using the
same namespace. These might be used by a custom CLI frontend to extend
the code with values from the CLI parsing, for example.
With the recent merging of embedded package imports and the entry CLI
package, it is now possible for users to build in mcl code into a single
binary. This additional permission makes it explicitly clear that this
is permitted to make it easier for those users. The condition is phrased
so that the terms can be "patched" by the original author if it's
necessary for the project. For example, if the name of the language
(mcl) changes, has a differently named new version, someone finds a
phrasing improvement or a legal loophole, or for some other
reasonable circumstance. Now go write some beautiful embedded tools!
This adds a new entry package that allows embedded programs to exist
inside of mgmt. This took a lot of refactoring to get the API right, but
I think it's incredibly elegant now. There is a chance we tweak things a
bit, but it's a good first start. All-in-one programs are coming soon!
Put these datastructures into an external package so they can be re-used
for parsing elsewhere.
Since we remove these dependencies, we need to manually import the
GAPI's so that they register. Despite efforts to embed them deeper into
the import tree without cycles, this failed. Logically what this told me
is that it actually makes sense to allow a different binary with only
one of the multiple GAPI's contained within.
The new version of the urfave/cli library is moving to generics, and
it's completely unclear to me why this is an improvement. Their new API
is very complicated to understand, which for me, defeats the purpose of
golang.
In parallel, I needed to do some upcoming cli API refactoring, so this
was a good time to look into new libraries. After a review of the
landscape, I found the alexflint/go-arg library which has a delightfully
elegant API. It does have a few rough edges, but it's otherwise very
usable, and I think it would be straightforward to add features and fix
issues.
Thanks Alex!
This simplifies the API by passing through the filesystem so that
function signatures don't need to be as complicated, and furthermore use
that consistently throughout.
From the Go specification [1]:
"1. ... For a nil slice, the number of iterations is 0."
Therefore, an additional nil check for around the loop is unnecessary.
[1]: https://go.dev/ref/spec#For_range
Signed-off-by: Eng Zer Jun <engzerjun@gmail.com>
If stringer is run from GOROOT, it can't find any packages; same error
as in https://go.dev/issue/31843. And since GOCACHE is always ignored
(see issue above) we can have a bare go generate command.
A regression in 4b0cdf9123 caused the
basic send/recv functionality to break for simple scenarios. This was
due to inadequate testing, and a partial misunderstanding of the
situation.
New testing should hopefully catch more cases, but send/recv and
compile-time checks are still not as complete as is probably possible.
If we don't startup fast enough, print some debugging information. We
should eventually change this to print the list of functions that aren't
started yet, and also to give each function entry a better String method
so that we have a better idea of what everything is.
This improves the autogrouping algorithm to support hierarchical
autogrouping. It's not guaranteed to work if we replace the reachability
grouper with something more efficient, but it's good enough for now.
Some of our special tests can only be run once per `go test` invocation.
That is, using the test -count flag will cause a guaranteed failure
since we depend on a global being initialized only once as part of that
test.
This adds a per-test config option so that a user can specify to never
run a particular test more than once. This lets us continue to use the
-count flag with the test suite, without it causing some tests to fail.
The Ordering and DAG detection code is challenging because we need
Ordering to do SetScope, but Ordering itself needs to know about scopes.
This improved variant should hopefully catch all the scenarios of
identically named variables causing invalid loops.
Co-authored-by: Samuel Gélineau <gelisam@gmail.com>
We are planning to implement an optimization in which some function
calls are compiled to a single static graph rather than to a CallFunc
which dynamically creates a sub-graph at runtime. These test cases
exercise corner cases for which it would be theoretically possible to
use a static graph, but which we might not be able to optimize.
This implements a new type of syntactic sugar for the common pattern of
a base class which returns a child class, and so on. Instead of needing
to repeatedly indent the child classes, we can instead prefix them at
the definition site (where created with the class keyword) with the name
of the parent class, followed by a colon, to get the desired embedded
sugar.
For example, instead of writing:
class base() {
class inner() {
class deepest() {
}
}
}
You can instead write:
class base() {
}
class base:inner() {
}
class base:inner:deepest() {
}
Of course, you can only access any of the inner classes by first
including (with the include keyword) a parent class, and then
subsequently including the inner one.