This adds a P/V style semaphore mechanism to the resource graph. This
enables the user to specify a number of "id:count" tags associated with
each resource which will reduce the parallelism of the CheckApply
operation to that maximum count.
This is particularly interesting because (assuming I'm not mistaken) the
implementation is dead-lock free assuming that no individual resource
permanently ever blocks during execution! I don't have a formal proof of
this, but I was able to convince myself on paper that it was the case.
An actual proof that N P/V counting semaphores in a DAG won't ever
dead-lock would be particularly welcome! Hint: the trick is to acquire
them in alphabetical order while respecting the DAG flow. Disclaimer,
this assumes that the lock count is always > 0 of course.
I'm still working on reducing the size of the monster patches that I
land, but I'm exercising the priviledge as the initial author. In any
case, this refactors worker into two, and cleans up the passing around
of the processChan. This puts common code into Init and Close.
This allows hot (un)plugging of CPU's! It also includes some general
cleanups which were necessary to support this as well as some other
features to the virt resource. Hotunplug requires Fedora 25.
It also comes with a mini shell script to help demo this capability.
Many thanks to pkrempa for his help with the libvirt API!
Licence removed due to to a read the docs (or sphinx/recommonmark) bug:
everything after the comment is not rendered.
Signed-off-by: Julien Pivotto <roidelapluie@inuits.eu>
Add owner which must be username or uid of the file owner, group which is
the group name or gid of the file, and mode which is the octal unix file
permissions.
Add separate implementation for Go 1.6 and lower.
The mgmt graph depends on state tracking to eliminate redundant pokes.
With the Watch loop now able to produce events quickly, it should no
longer play a part in determining the vertex state. This simplifies the
resource API as well!
This adds rate limiting with the limit and burst meta parameters. The
limits apply to how often the Process check is called. As a result, it
might get called more often than there are Watch events due to possible
Poke/BackPoke events.
This system might need to get rethought in the future depending on its
usefulness.
This patch makes a number of changes in the engine surrounding the
resource API. In particular:
* Cleanup of send/read event.
* Cleanup of DoSend (now Event) in the Watch method.
* Events are now more consistently pointers.
* Exiting within Watch is now done in a single place.
* Multiple incoming events will be combined into a single action.
* Events in flight during an action are played back after CheckApply.
* Addition of Close method to API
This gets things ready for rate limiting and semaphore metaparams!
This allows a resource to use polling instead of the event based
mechanism. This isn't recommended, but it could be useful, and it was
certainly fun to code!