If two resources are grouped, then the result should contain the
semaphores of both resources. This is because the user is expecting
(independently) resource A and resource B to have a limiting choke
point. If when combined those choke points aren't preserved, then we
have broken an important promise to the user.
This adds a P/V style semaphore mechanism to the resource graph. This
enables the user to specify a number of "id:count" tags associated with
each resource which will reduce the parallelism of the CheckApply
operation to that maximum count.
This is particularly interesting because (assuming I'm not mistaken) the
implementation is dead-lock free assuming that no individual resource
permanently ever blocks during execution! I don't have a formal proof of
this, but I was able to convince myself on paper that it was the case.
An actual proof that N P/V counting semaphores in a DAG won't ever
dead-lock would be particularly welcome! Hint: the trick is to acquire
them in alphabetical order while respecting the DAG flow. Disclaimer,
this assumes that the lock count is always > 0 of course.
This makes this logically more separate! :) As an aside...
I really hate the way golang does dependencies and packages. Yes, some
people insist on nesting their code deep into a $GOPATH, which is fine
if you're a google dev and are forced to work this way, but annoying for
the rest of the world. Your code shouldn't need a git commit to switch
to a a different vcs host! Gah I hate this so much.