lang: funcs: Add core lookup functions

These versions don't take defaults and instead return the zero value if
there is an issue.
This commit is contained in:
James Shubin
2023-10-11 20:37:29 -04:00
parent 3b46e88734
commit e38eb43955
3 changed files with 1302 additions and 0 deletions

View File

@@ -0,0 +1,413 @@
// Mgmt
// Copyright (C) 2013-2023+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package funcs
import (
"context"
"fmt"
"math"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// ListLookupFuncName is the name this function is registered as.
ListLookupFuncName = "list_lookup"
// arg names...
listLookupArgNameList = "list"
listLookupArgNameIndex = "index"
)
func init() {
Register(ListLookupFuncName, func() interfaces.Func { return &ListLookupFunc{} }) // must register the func and name
}
var _ interfaces.PolyFunc = &ListLookupFunc{} // ensure it meets this expectation
// ListLookupFunc is a list index lookup function. If you provide a negative
// index, then it will return the zero value for that type.
type ListLookupFunc struct {
Type *types.Type // Kind == List, that is used as the list we lookup in
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *ListLookupFunc) String() string {
return ListLookupFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *ListLookupFunc) ArgGen(index int) (string, error) {
seq := []string{listLookupArgNameList, listLookupArgNameIndex}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *ListLookupFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(list T1, index int) T3
// (list: []T3 => T3 aka T1 => T3)
listName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
indexName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
dummyList := &interfaces.ExprAny{} // corresponds to the list type
dummyIndex := &interfaces.ExprAny{} // corresponds to the index type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
// relationship between T1 and T3
invar = &interfaces.EqualityWrapListInvariant{
Expr1: dummyList,
Expr2Val: dummyOut,
}
invariants = append(invariants, invar)
// the index has to be an int
invar = &interfaces.EqualsInvariant{
Expr: dummyIndex,
Type: types.TypeInt,
}
invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{listName, indexName}
mapped[listName] = dummyList
mapped[indexName] = dummyIndex
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 2 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyList,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyIndex,
}
invariants = append(invariants, invar)
// If we figure out either of these types, we'll know
// the full type...
var t1 *types.Type // list type
var t3 *types.Type // list val type
// validateArg0 checks: list T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
// we happen to have a list!
if k := typ.Kind; k != types.KindList {
return fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
if typ.Val == nil {
// programming error
return fmt.Errorf("list is missing type")
}
if err := typ.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
if err := typ.Val.Cmp(t3); t3 != nil && err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
// learn!
t1 = typ
t3 = typ.Val
return nil
}
// validateArg1 checks: list index
validateArg1 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if typ.Kind != types.KindInt {
return errwrap.Wrapf(err, "input index type was inconsistent")
}
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t3 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first list arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t3 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first list arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known?
// this only checks if this is an int
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second index arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type
// this only checks if this is an int
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second index arg type is inconsistent")
}
}
// XXX: if the types aren't know statically?
if t1 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyList,
Type: t1,
}
invariants = append(invariants, invar)
}
if t3 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyOut,
Type: t3,
}
invariants = append(invariants, invar)
}
// XXX: if t{1..2} are missing, we could also return a
// new generator for later if we learn new information,
// but we'd have to be careful to not do it infinitely.
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *ListLookupFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return nil, fmt.Errorf("the listlookup function needs exactly two args")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
tList, exists := typ.Map[typ.Ord[0]]
if !exists || tList == nil {
return nil, fmt.Errorf("first arg must be specified")
}
tIndex, exists := typ.Map[typ.Ord[1]]
if !exists || tIndex == nil {
return nil, fmt.Errorf("second arg must be specified")
}
if tIndex != nil && tIndex.Kind != types.KindInt {
return nil, fmt.Errorf("index must be int kind")
}
if err := tList.Val.Cmp(typ.Out); err != nil {
return nil, errwrap.Wrapf(err, "return type must match list val type")
}
obj.Type = tList // list type
return obj.sig(), nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *ListLookupFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindList {
return fmt.Errorf("type must be a kind of list")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *ListLookupFunc) Info() *interfaces.Info {
var sig *types.Type
if obj.Type != nil { // don't panic if called speculatively
// TODO: can obj.Type.Key or obj.Type.Val be nil (a partial) ?
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: sig, // func kind
Err: obj.Validate(),
}
}
// helper
func (obj *ListLookupFunc) sig() *types.Type {
v := obj.Type.Val.String()
return types.NewType(fmt.Sprintf("func(%s %s, %s int) %s", listLookupArgNameList, obj.Type.String(), listLookupArgNameIndex, v))
}
// Init runs some startup code for this function.
func (obj *ListLookupFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *ListLookupFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
l := (input.Struct()[listLookupArgNameList]).(*types.ListValue)
index := input.Struct()[listLookupArgNameIndex].Int()
zero := l.Type().New() // the zero value
// TODO: should we handle overflow by returning zero?
if index > math.MaxInt { // max int size varies by arch
return fmt.Errorf("list index overflow, got: %d, max is: %d", index, math.MaxInt32)
}
// negative index values are "not found" here!
var result types.Value
val, exists := l.Lookup(int(index))
if exists {
result = val
} else {
result = zero
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-ctx.Done():
return nil
}
}
}

455
lang/funcs/lookup_func.go Normal file
View File

@@ -0,0 +1,455 @@
// Mgmt
// Copyright (C) 2013-2023+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package funcs
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// LookupFuncName is the name this function is registered as.
// This starts with an underscore so that it cannot be used from the
// lexer.
LookupFuncName = "_lookup"
// arg names...
lookupArgNameListOrMap = "listormap"
lookupArgNameIndexOrKey = "indexorkey"
)
func init() {
Register(LookupFuncName, func() interfaces.Func { return &LookupFunc{} }) // must register the func and name
}
var _ interfaces.PolyFunc = &LookupFunc{} // ensure it meets this expectation
// LookupFunc is a list index or map key lookup function. It does both because
// the current syntax in the parser is identical, so it's convenient to mix the
// two together. This calls out to some of the code in the ListLookupFunc and
// MapLookupFunc implementations. If the index or key for this input doesn't
// exist, then it will return the zero value for that type.
type LookupFunc struct {
Type *types.Type // Kind == List OR Map, that is used as the list/map we lookup in
//init *interfaces.Init
fn interfaces.PolyFunc // handle to ListLookupFunc or MapLookupFunc
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *LookupFunc) String() string {
return LookupFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *LookupFunc) ArgGen(index int) (string, error) {
seq := []string{lookupArgNameListOrMap, lookupArgNameIndexOrKey}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *LookupFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(list T1, index int) T3
// (list: []T3 => T3 aka T1 => T3)
// OR
// func(map T1, key T2) T3
// (map: T2 => T3)
listOrMapName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
indexOrKeyName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
dummyListOrMap := &interfaces.ExprAny{} // corresponds to the list or map type
dummyIndexOrKey := &interfaces.ExprAny{} // corresponds to the index or key type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
ors := []interfaces.Invariant{} // solve only one from this list
var listInvariants []interfaces.Invariant
// relationship between T1 and T3
invar = &interfaces.EqualityWrapListInvariant{
Expr1: dummyListOrMap,
Expr2Val: dummyOut,
}
listInvariants = append(listInvariants, invar)
// the index has to be an int
invar = &interfaces.EqualsInvariant{
Expr: dummyIndexOrKey,
Type: types.TypeInt,
}
listInvariants = append(listInvariants, invar)
// all of these need to be true together
and := &interfaces.ConjunctionInvariant{
Invariants: listInvariants,
}
ors = append(ors, and) // one solution added!
// OR
// relationship between T1, T2 and T3
mapInvariant := &interfaces.EqualityWrapMapInvariant{
Expr1: dummyListOrMap,
Expr2Key: dummyIndexOrKey,
Expr2Val: dummyOut,
}
ors = append(ors, mapInvariant) // one solution added!
invar = &interfaces.ExclusiveInvariant{
Invariants: ors, // one and only one of these should be true
}
invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{listOrMapName, indexOrKeyName}
mapped[listOrMapName] = dummyListOrMap
mapped[indexOrKeyName] = dummyIndexOrKey
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 2 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyListOrMap,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyIndexOrKey,
}
invariants = append(invariants, invar)
// If we figure out all of these three types, we'll
// know the full type...
var t1 *types.Type // list or map type
var t2 *types.Type // list or map index/key type
var t3 *types.Type // list or map val type
// validateArg0 checks: list or map T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
// we happen to have a list or a map!
if k := typ.Kind; k != types.KindList && k != types.KindMap {
return fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
//isList := typ.Kind == types.KindList
isMap := typ.Kind == types.KindMap
if isMap && typ.Key == nil {
// programming error
return fmt.Errorf("map is missing type")
}
if typ.Val == nil { // used for list or map
// programming error
return fmt.Errorf("map/list is missing type")
}
if err := typ.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
if isMap {
if err := typ.Key.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
}
if err := typ.Val.Cmp(t3); t3 != nil && err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
// learn!
t1 = typ
if isMap {
t2 = typ.Key
} else if t1 != nil && t3 != nil {
t2 = types.TypeInt
}
t3 = typ.Val
return nil
}
// validateArg1 checks: list index
validateListArg1 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if typ.Kind != types.KindInt {
return errwrap.Wrapf(err, "input index type was inconsistent")
}
// learn!
t2 = typ
return nil
}
// validateArg1 checks: map key T2
validateMapArg1 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if err := typ.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
if t1 != nil {
if err := typ.Cmp(t1.Key); err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
}
if t3 != nil {
t := &types.Type{ // build t1
Kind: types.KindMap,
Key: typ, // t2
Val: t3,
}
if err := t.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
t1 = t // learn!
}
// learn!
t2 = typ
return nil
}
// validateArg1 checks: list index
validateArg1 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
isList := typ.Kind == types.KindList
isMap := typ.Kind == types.KindMap
if isList {
return validateListArg1(typ)
}
if isMap {
return validateMapArg1(typ)
}
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t3 on success (and sometimes t2) if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t3 on success (and sometimes t2) if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known?
// this sets t2 (and sometimes t1) on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type
// this sets t2 (and sometimes t1) on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second arg type is inconsistent")
}
}
// XXX: if the types aren't know statically?
if t1 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyListOrMap,
Type: t1,
}
invariants = append(invariants, invar)
}
if t2 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyIndexOrKey,
Type: t2,
}
invariants = append(invariants, invar)
}
if t3 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyOut,
Type: t3,
}
invariants = append(invariants, invar)
}
// XXX: if t{1..2} are missing, we could also return a
// new generator for later if we learn new information,
// but we'd have to be careful to not do it infinitely.
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *LookupFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) < 1 {
return nil, fmt.Errorf("the lookup function needs at least one arg") // actually 2 or 3
}
tListOrMap, exists := typ.Map[typ.Ord[0]]
if !exists || tListOrMap == nil {
return nil, fmt.Errorf("first arg must be specified")
}
if tListOrMap == nil {
return nil, fmt.Errorf("first arg must have a type")
}
if tListOrMap.Kind == types.KindList {
obj.fn = &ListLookupFunc{} // set it
return obj.fn.Build(typ)
}
if tListOrMap.Kind == types.KindMap {
obj.fn = &MapLookupFunc{} // set it
return obj.fn.Build(typ)
}
return nil, fmt.Errorf("we must lookup from either a list or a map")
}
// Validate tells us if the input struct takes a valid form.
func (obj *LookupFunc) Validate() error {
if obj.fn == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
return obj.fn.Validate()
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *LookupFunc) Info() *interfaces.Info {
if obj.fn == nil {
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: nil, // func kind
Err: obj.Validate(),
}
}
return obj.fn.Info()
}
// Init runs some startup code for this function.
func (obj *LookupFunc) Init(init *interfaces.Init) error {
if obj.fn == nil {
return fmt.Errorf("function not built correctly")
}
//obj.init = init
return obj.fn.Init(init)
}
// Stream returns the changing values that this func has over time.
func (obj *LookupFunc) Stream(ctx context.Context) error {
if obj.fn == nil {
return fmt.Errorf("function not built correctly")
}
return obj.fn.Stream(ctx)
}

View File

@@ -0,0 +1,434 @@
// Mgmt
// Copyright (C) 2013-2023+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package funcs
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// MapLookupFuncName is the name this function is registered as.
MapLookupFuncName = "map_lookup"
// arg names...
mapLookupArgNameMap = "map"
mapLookupArgNameKey = "key"
)
func init() {
Register(MapLookupFuncName, func() interfaces.Func { return &MapLookupFunc{} }) // must register the func and name
}
var _ interfaces.PolyFunc = &MapLookupFunc{} // ensure it meets this expectation
// MapLookupFunc is a key map lookup function. If you provide a missing key,
// then it will return the zero value for that type.
type MapLookupFunc struct {
Type *types.Type // Kind == Map, that is used as the map we lookup
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *MapLookupFunc) String() string {
return MapLookupFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *MapLookupFunc) ArgGen(index int) (string, error) {
seq := []string{mapLookupArgNameMap, mapLookupArgNameKey}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// Unify returns the list of invariants that this func produces.
func (obj *MapLookupFunc) Unify(expr interfaces.Expr) ([]interfaces.Invariant, error) {
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// func(map T1, key T2) T3
// (map: T2 => T3)
mapName, err := obj.ArgGen(0)
if err != nil {
return nil, err
}
keyName, err := obj.ArgGen(1)
if err != nil {
return nil, err
}
dummyMap := &interfaces.ExprAny{} // corresponds to the map type
dummyKey := &interfaces.ExprAny{} // corresponds to the key type
dummyOut := &interfaces.ExprAny{} // corresponds to the out string
// relationship between T1, T2 and T3
invar = &interfaces.EqualityWrapMapInvariant{
Expr1: dummyMap,
Expr2Key: dummyKey,
Expr2Val: dummyOut,
}
invariants = append(invariants, invar)
// full function
mapped := make(map[string]interfaces.Expr)
ordered := []string{mapName, keyName}
mapped[mapName] = dummyMap
mapped[keyName] = dummyKey
invar = &interfaces.EqualityWrapFuncInvariant{
Expr1: expr, // maps directly to us!
Expr2Map: mapped,
Expr2Ord: ordered,
Expr2Out: dummyOut,
}
invariants = append(invariants, invar)
// generator function
fn := func(fnInvariants []interfaces.Invariant, solved map[interfaces.Expr]*types.Type) ([]interfaces.Invariant, error) {
for _, invariant := range fnInvariants {
// search for this special type of invariant
cfavInvar, ok := invariant.(*interfaces.CallFuncArgsValueInvariant)
if !ok {
continue
}
// did we find the mapping from us to ExprCall ?
if cfavInvar.Func != expr {
continue
}
// cfavInvar.Expr is the ExprCall! (the return pointer)
// cfavInvar.Args are the args that ExprCall uses!
if l := len(cfavInvar.Args); l != 2 {
return nil, fmt.Errorf("unable to build function with %d args", l)
}
var invariants []interfaces.Invariant
var invar interfaces.Invariant
// add the relationship to the returned value
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Expr,
Expr2: dummyOut,
}
invariants = append(invariants, invar)
// add the relationships to the called args
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[0],
Expr2: dummyMap,
}
invariants = append(invariants, invar)
invar = &interfaces.EqualityInvariant{
Expr1: cfavInvar.Args[1],
Expr2: dummyKey,
}
invariants = append(invariants, invar)
// If we figure out all of these three types, we'll
// know the full type...
var t1 *types.Type // map type
var t2 *types.Type // map key type
var t3 *types.Type // map val type
// validateArg0 checks: map T1
validateArg0 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
// we happen to have a map!
if k := typ.Kind; k != types.KindMap {
return fmt.Errorf("unable to build function with 0th arg of kind: %s", k)
}
if typ.Key == nil || typ.Val == nil {
// programming error
return fmt.Errorf("map is missing type")
}
if err := typ.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
if err := typ.Key.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
if err := typ.Val.Cmp(t3); t3 != nil && err != nil {
return errwrap.Wrapf(err, "input val type was inconsistent")
}
// learn!
t1 = typ
t2 = typ.Key
t3 = typ.Val
return nil
}
// validateArg1 checks: map key T2
validateArg1 := func(typ *types.Type) error {
if typ == nil { // unknown so far
return nil
}
if err := typ.Cmp(t2); t2 != nil && err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
if t1 != nil {
if err := typ.Cmp(t1.Key); err != nil {
return errwrap.Wrapf(err, "input key type was inconsistent")
}
}
if t3 != nil {
t := &types.Type{ // build t1
Kind: types.KindMap,
Key: typ, // t2
Val: t3,
}
if err := t.Cmp(t1); t1 != nil && err != nil {
return errwrap.Wrapf(err, "input type was inconsistent")
}
t1 = t // learn!
}
// learn!
t2 = typ
return nil
}
if typ, err := cfavInvar.Args[0].Type(); err == nil { // is it known?
// this sets t1 and t2 and t3 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first map arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[0]]; exists { // alternate way to lookup type
// this sets t1 and t2 and t3 on success if it learned
if err := validateArg0(typ); err != nil {
return nil, errwrap.Wrapf(err, "first map arg type is inconsistent")
}
}
if typ, err := cfavInvar.Args[1].Type(); err == nil { // is it known?
// this sets t2 (and sometimes t1) on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second key arg type is inconsistent")
}
}
if typ, exists := solved[cfavInvar.Args[1]]; exists { // alternate way to lookup type
// this sets t2 (and sometimes t1) on success if it learned
if err := validateArg1(typ); err != nil {
return nil, errwrap.Wrapf(err, "second key arg type is inconsistent")
}
}
// XXX: if the types aren't know statically?
if t1 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyMap,
Type: t1,
}
invariants = append(invariants, invar)
}
if t2 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyKey,
Type: t2,
}
invariants = append(invariants, invar)
}
if t3 != nil {
invar := &interfaces.EqualsInvariant{
Expr: dummyOut,
Type: t3,
}
invariants = append(invariants, invar)
}
// XXX: if t{1..3} are missing, we could also return a
// new generator for later if we learn new information,
// but we'd have to be careful to not do it infinitely.
// TODO: do we return this relationship with ExprCall?
invar = &interfaces.EqualityWrapCallInvariant{
// TODO: should Expr1 and Expr2 be reversed???
Expr1: cfavInvar.Expr,
//Expr2Func: cfavInvar.Func, // same as below
Expr2Func: expr,
}
invariants = append(invariants, invar)
// TODO: are there any other invariants we should build?
return invariants, nil // generator return
}
// We couldn't tell the solver anything it didn't already know!
return nil, fmt.Errorf("couldn't generate new invariants")
}
invar = &interfaces.GeneratorInvariant{
Func: fn,
}
invariants = append(invariants, invar)
return invariants, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *MapLookupFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return nil, fmt.Errorf("the maplookup function needs exactly three args")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
tMap, exists := typ.Map[typ.Ord[0]]
if !exists || tMap == nil {
return nil, fmt.Errorf("first arg must be specified")
}
tKey, exists := typ.Map[typ.Ord[1]]
if !exists || tKey == nil {
return nil, fmt.Errorf("second arg must be specified")
}
if err := tMap.Key.Cmp(tKey); err != nil {
return nil, errwrap.Wrapf(err, "key must match map key type")
}
if err := tMap.Val.Cmp(typ.Out); err != nil {
return nil, errwrap.Wrapf(err, "return type must match map val type")
}
obj.Type = tMap // map type
return obj.sig(), nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *MapLookupFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindMap {
return fmt.Errorf("type must be a kind of map")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *MapLookupFunc) Info() *interfaces.Info {
var sig *types.Type
if obj.Type != nil { // don't panic if called speculatively
// TODO: can obj.Type.Key or obj.Type.Val be nil (a partial) ?
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: sig, // func kind
Err: obj.Validate(),
}
}
// helper
func (obj *MapLookupFunc) sig() *types.Type {
k := obj.Type.Key.String()
v := obj.Type.Val.String()
return types.NewType(fmt.Sprintf("func(%s %s, %s %s) %s", mapLookupArgNameMap, obj.Type.String(), mapLookupArgNameKey, k, v))
}
// Init runs some startup code for this function.
func (obj *MapLookupFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *MapLookupFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
m := (input.Struct()[mapLookupArgNameMap]).(*types.MapValue)
key := input.Struct()[mapLookupArgNameKey]
zero := m.Type().New() // the zero value
var result types.Value
val, exists := m.Lookup(key)
if exists {
result = val
} else {
result = zero
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-ctx.Done():
return nil
}
}
}