lang: unification: Improve type unification algorithm
The simple type unification algorithm suffered from some serious performance and memory problems when used with certain code bases. This adds some crucial optimizations that improve performance drastically.
This commit is contained in:
@@ -25,6 +25,18 @@ import (
|
||||
"github.com/purpleidea/mgmt/lang/types"
|
||||
)
|
||||
|
||||
// Unifier holds all the data that the Unify function will need for it to run.
|
||||
type Unifier struct {
|
||||
// AST is the input abstract syntax tree to unify.
|
||||
AST interfaces.Stmt
|
||||
|
||||
// Solver is the solver algorithm implementation to use.
|
||||
Solver func([]interfaces.Invariant, []interfaces.Expr) (*InvariantSolution, error)
|
||||
|
||||
Debug bool
|
||||
Logf func(format string, v ...interface{})
|
||||
}
|
||||
|
||||
// Unify takes an AST expression tree and attempts to assign types to every node
|
||||
// using the specified solver. The expression tree returns a list of invariants
|
||||
// (or constraints) which must be met in order to find a unique value for the
|
||||
@@ -37,32 +49,77 @@ import (
|
||||
// type. This function and logic was invented after the author could not find
|
||||
// any proper literature or examples describing a well-known implementation of
|
||||
// this process. Improvements and polite recommendations are welcome.
|
||||
func Unify(ast interfaces.Stmt, solver func([]interfaces.Invariant) (*InvariantSolution, error)) error {
|
||||
//log.Printf("unification: tree: %+v", ast) // debug
|
||||
if ast == nil {
|
||||
return fmt.Errorf("AST is nil")
|
||||
func (obj *Unifier) Unify() error {
|
||||
if obj.AST == nil {
|
||||
return fmt.Errorf("the AST is nil")
|
||||
}
|
||||
if obj.Solver == nil {
|
||||
return fmt.Errorf("the Solver is missing")
|
||||
}
|
||||
if obj.Logf == nil {
|
||||
return fmt.Errorf("the Logf function is missing")
|
||||
}
|
||||
|
||||
invariants, err := ast.Unify()
|
||||
if obj.Debug {
|
||||
obj.Logf("tree: %+v", obj.AST)
|
||||
}
|
||||
invariants, err := obj.AST.Unify()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
solved, err := solver(invariants)
|
||||
// build a list of what we think we need to solve for to succeed
|
||||
exprs := []interfaces.Expr{}
|
||||
for _, x := range invariants {
|
||||
exprs = append(exprs, x.ExprList()...)
|
||||
}
|
||||
exprMap := ExprListToExprMap(exprs) // makes searching faster
|
||||
exprList := ExprMapToExprList(exprMap) // makes it unique (no duplicates)
|
||||
|
||||
solved, err := obj.Solver(invariants, exprList)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// TODO: ideally we would know how many different expressions need their
|
||||
// types set in the AST and then ensure we have this many unique
|
||||
// solutions, and if not, then fail. This would ensure we don't have an
|
||||
// AST that is only partially populated with the correct types.
|
||||
// determine what expr's we need to solve for
|
||||
if obj.Debug {
|
||||
obj.Logf("expr count: %d", len(exprList))
|
||||
//for _, x := range exprList {
|
||||
// obj.Logf("> %p (%+v)", x, x)
|
||||
//}
|
||||
}
|
||||
|
||||
//log.Printf("unification: found a solution!") // TODO: get a logf function passed in...
|
||||
// XXX: why doesn't `len(exprList)` always == `len(solved.Solutions)` ?
|
||||
// XXX: is it due to the extra ExprAny ??? I see an extra function sometimes...
|
||||
|
||||
if obj.Debug {
|
||||
obj.Logf("solutions count: %d", len(solved.Solutions))
|
||||
//for _, x := range solved.Solutions {
|
||||
// obj.Logf("> %p (%+v) -- %s", x.Expr, x.Type, x.Expr.String())
|
||||
//}
|
||||
}
|
||||
|
||||
// Determine that our solver produced a solution for every expr that
|
||||
// we're interested in. If it didn't, and it didn't error, then it's a
|
||||
// bug. We check for this because we care about safety, this ensures
|
||||
// that our AST will get fully populated with the correct types!
|
||||
for _, x := range solved.Solutions {
|
||||
delete(exprMap, x.Expr) // remove everything we know about
|
||||
}
|
||||
if c := len(exprMap); c > 0 { // if there's anything left, it's bad...
|
||||
// programming error!
|
||||
return fmt.Errorf("got %d unbound expr's", c)
|
||||
}
|
||||
|
||||
if obj.Debug {
|
||||
obj.Logf("found a solution!")
|
||||
}
|
||||
// solver has found a solution, apply it...
|
||||
// we're modifying the AST, so code can't error now...
|
||||
for _, x := range solved.Solutions {
|
||||
//log.Printf("unification: solution: %p => %+v\t(%+v)", x.Expr, x.Type, x.Expr.String()) // debug
|
||||
if obj.Debug {
|
||||
obj.Logf("solution: %p => %+v\t(%+v)", x.Expr, x.Type, x.Expr.String())
|
||||
}
|
||||
// apply this to each AST node
|
||||
if err := x.Expr.SetType(x.Type); err != nil {
|
||||
// programming error!
|
||||
@@ -85,6 +142,24 @@ func (obj *EqualsInvariant) String() string {
|
||||
return fmt.Sprintf("%p == %s", obj.Expr, obj.Type)
|
||||
}
|
||||
|
||||
// ExprList returns the list of valid expressions in this invariant.
|
||||
func (obj *EqualsInvariant) ExprList() []interfaces.Expr {
|
||||
return []interfaces.Expr{obj.Expr}
|
||||
}
|
||||
|
||||
// Matches returns whether an invariant matches the existing solution. If it is
|
||||
// inconsistent, then it errors.
|
||||
func (obj *EqualsInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
||||
typ, exists := solved[obj.Expr]
|
||||
if !exists {
|
||||
return false, nil
|
||||
}
|
||||
if err := typ.Cmp(obj.Type); err != nil {
|
||||
return false, err
|
||||
}
|
||||
return true, nil
|
||||
}
|
||||
|
||||
// EqualityInvariant is an invariant that symbolizes that the two expressions
|
||||
// must have equivalent types.
|
||||
// TODO: is there a better name than EqualityInvariant
|
||||
@@ -98,6 +173,26 @@ func (obj *EqualityInvariant) String() string {
|
||||
return fmt.Sprintf("%p == %p", obj.Expr1, obj.Expr2)
|
||||
}
|
||||
|
||||
// ExprList returns the list of valid expressions in this invariant.
|
||||
func (obj *EqualityInvariant) ExprList() []interfaces.Expr {
|
||||
return []interfaces.Expr{obj.Expr1, obj.Expr2}
|
||||
}
|
||||
|
||||
// Matches returns whether an invariant matches the existing solution. If it is
|
||||
// inconsistent, then it errors.
|
||||
func (obj *EqualityInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
||||
t1, exists1 := solved[obj.Expr1]
|
||||
t2, exists2 := solved[obj.Expr2]
|
||||
if !exists1 || !exists2 {
|
||||
return false, nil // not matched yet
|
||||
}
|
||||
if err := t1.Cmp(t2); err != nil {
|
||||
return false, err
|
||||
}
|
||||
|
||||
return true, nil // matched!
|
||||
}
|
||||
|
||||
// EqualityInvariantList is an invariant that symbolizes that all the
|
||||
// expressions listed must have equivalent types.
|
||||
type EqualityInvariantList struct {
|
||||
@@ -113,6 +208,32 @@ func (obj *EqualityInvariantList) String() string {
|
||||
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
||||
}
|
||||
|
||||
// ExprList returns the list of valid expressions in this invariant.
|
||||
func (obj *EqualityInvariantList) ExprList() []interfaces.Expr {
|
||||
return obj.Exprs
|
||||
}
|
||||
|
||||
// Matches returns whether an invariant matches the existing solution. If it is
|
||||
// inconsistent, then it errors.
|
||||
func (obj *EqualityInvariantList) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
||||
found := true // assume true
|
||||
var typ *types.Type
|
||||
for _, x := range obj.Exprs {
|
||||
t, exists := solved[x]
|
||||
if !exists {
|
||||
found = false
|
||||
continue
|
||||
}
|
||||
if typ == nil { // set the first time
|
||||
typ = t
|
||||
}
|
||||
if err := typ.Cmp(t); err != nil {
|
||||
return false, err
|
||||
}
|
||||
}
|
||||
return found, nil
|
||||
}
|
||||
|
||||
// EqualityWrapListInvariant expresses that a list in Expr1 must have elements
|
||||
// that have the same type as the expression in Expr2Val.
|
||||
type EqualityWrapListInvariant struct {
|
||||
@@ -125,6 +246,28 @@ func (obj *EqualityWrapListInvariant) String() string {
|
||||
return fmt.Sprintf("%p == [%p]", obj.Expr1, obj.Expr2Val)
|
||||
}
|
||||
|
||||
// ExprList returns the list of valid expressions in this invariant.
|
||||
func (obj *EqualityWrapListInvariant) ExprList() []interfaces.Expr {
|
||||
return []interfaces.Expr{obj.Expr1, obj.Expr2Val}
|
||||
}
|
||||
|
||||
// Matches returns whether an invariant matches the existing solution. If it is
|
||||
// inconsistent, then it errors.
|
||||
func (obj *EqualityWrapListInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
||||
t1, exists1 := solved[obj.Expr1] // list type
|
||||
t2, exists2 := solved[obj.Expr2Val]
|
||||
if !exists1 || !exists2 {
|
||||
return false, nil // not matched yet
|
||||
}
|
||||
if t1.Kind != types.KindList {
|
||||
return false, fmt.Errorf("expected list kind")
|
||||
}
|
||||
if err := t1.Val.Cmp(t2); err != nil {
|
||||
return false, err // inconsistent!
|
||||
}
|
||||
return true, nil // matched!
|
||||
}
|
||||
|
||||
// EqualityWrapMapInvariant expresses that a map in Expr1 must have keys that
|
||||
// match the type of the expression in Expr2Key and values that match the type
|
||||
// of the expression in Expr2Val.
|
||||
@@ -139,6 +282,32 @@ func (obj *EqualityWrapMapInvariant) String() string {
|
||||
return fmt.Sprintf("%p == {%p: %p}", obj.Expr1, obj.Expr2Key, obj.Expr2Val)
|
||||
}
|
||||
|
||||
// ExprList returns the list of valid expressions in this invariant.
|
||||
func (obj *EqualityWrapMapInvariant) ExprList() []interfaces.Expr {
|
||||
return []interfaces.Expr{obj.Expr1, obj.Expr2Key, obj.Expr2Val}
|
||||
}
|
||||
|
||||
// Matches returns whether an invariant matches the existing solution. If it is
|
||||
// inconsistent, then it errors.
|
||||
func (obj *EqualityWrapMapInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
||||
t1, exists1 := solved[obj.Expr1] // list type
|
||||
t2, exists2 := solved[obj.Expr2Key]
|
||||
t3, exists3 := solved[obj.Expr2Val]
|
||||
if !exists1 || !exists2 || !exists3 {
|
||||
return false, nil // not matched yet
|
||||
}
|
||||
if t1.Kind != types.KindMap {
|
||||
return false, fmt.Errorf("expected map kind")
|
||||
}
|
||||
if err := t1.Key.Cmp(t2); err != nil {
|
||||
return false, err // inconsistent!
|
||||
}
|
||||
if err := t1.Val.Cmp(t3); err != nil {
|
||||
return false, err // inconsistent!
|
||||
}
|
||||
return true, nil // matched!
|
||||
}
|
||||
|
||||
// EqualityWrapStructInvariant expresses that a struct in Expr1 must have fields
|
||||
// that match the type of the expressions listed in Expr2Map.
|
||||
type EqualityWrapStructInvariant struct {
|
||||
@@ -163,6 +332,49 @@ func (obj *EqualityWrapStructInvariant) String() string {
|
||||
return fmt.Sprintf("%p == struct{%s}", obj.Expr1, strings.Join(s, "; "))
|
||||
}
|
||||
|
||||
// ExprList returns the list of valid expressions in this invariant.
|
||||
func (obj *EqualityWrapStructInvariant) ExprList() []interfaces.Expr {
|
||||
exprs := []interfaces.Expr{obj.Expr1}
|
||||
for _, x := range obj.Expr2Map {
|
||||
exprs = append(exprs, x)
|
||||
}
|
||||
return exprs
|
||||
}
|
||||
|
||||
// Matches returns whether an invariant matches the existing solution. If it is
|
||||
// inconsistent, then it errors.
|
||||
func (obj *EqualityWrapStructInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
||||
t1, exists1 := solved[obj.Expr1] // list type
|
||||
if !exists1 {
|
||||
return false, nil // not matched yet
|
||||
}
|
||||
if t1.Kind != types.KindStruct {
|
||||
return false, fmt.Errorf("expected struct kind")
|
||||
}
|
||||
|
||||
found := true // assume true
|
||||
for _, key := range obj.Expr2Ord {
|
||||
_, exists := t1.Map[key]
|
||||
if !exists {
|
||||
return false, fmt.Errorf("missing invariant struct key of: `%s`", key)
|
||||
}
|
||||
e, exists := obj.Expr2Map[key]
|
||||
if !exists {
|
||||
return false, fmt.Errorf("missing matched struct key of: `%s`", key)
|
||||
}
|
||||
t, exists := solved[e]
|
||||
if !exists {
|
||||
found = false
|
||||
continue
|
||||
}
|
||||
if err := t1.Map[key].Cmp(t); err != nil {
|
||||
return false, err // inconsistent!
|
||||
}
|
||||
}
|
||||
|
||||
return found, nil // matched!
|
||||
}
|
||||
|
||||
// EqualityWrapFuncInvariant expresses that a func in Expr1 must have args that
|
||||
// match the type of the expressions listed in Expr2Map and a return value that
|
||||
// matches the type of the expression in Expr2Out.
|
||||
@@ -190,6 +402,58 @@ func (obj *EqualityWrapFuncInvariant) String() string {
|
||||
return fmt.Sprintf("%p == func{%s} %p", obj.Expr1, strings.Join(s, "; "), obj.Expr2Out)
|
||||
}
|
||||
|
||||
// ExprList returns the list of valid expressions in this invariant.
|
||||
func (obj *EqualityWrapFuncInvariant) ExprList() []interfaces.Expr {
|
||||
exprs := []interfaces.Expr{obj.Expr1}
|
||||
for _, x := range obj.Expr2Map {
|
||||
exprs = append(exprs, x)
|
||||
}
|
||||
exprs = append(exprs, obj.Expr2Out)
|
||||
return exprs
|
||||
}
|
||||
|
||||
// Matches returns whether an invariant matches the existing solution. If it is
|
||||
// inconsistent, then it errors.
|
||||
func (obj *EqualityWrapFuncInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
||||
t1, exists1 := solved[obj.Expr1] // list type
|
||||
if !exists1 {
|
||||
return false, nil // not matched yet
|
||||
}
|
||||
if t1.Kind != types.KindFunc {
|
||||
return false, fmt.Errorf("expected func kind")
|
||||
}
|
||||
|
||||
found := true // assume true
|
||||
for _, key := range obj.Expr2Ord {
|
||||
_, exists := t1.Map[key]
|
||||
if !exists {
|
||||
return false, fmt.Errorf("missing invariant struct key of: `%s`", key)
|
||||
}
|
||||
e, exists := obj.Expr2Map[key]
|
||||
if !exists {
|
||||
return false, fmt.Errorf("missing matched struct key of: `%s`", key)
|
||||
}
|
||||
t, exists := solved[e]
|
||||
if !exists {
|
||||
found = false
|
||||
continue
|
||||
}
|
||||
if err := t1.Map[key].Cmp(t); err != nil {
|
||||
return false, err // inconsistent!
|
||||
}
|
||||
}
|
||||
|
||||
t, exists := solved[obj.Expr2Out]
|
||||
if !exists {
|
||||
return false, nil
|
||||
}
|
||||
if err := t1.Out.Cmp(t); err != nil {
|
||||
return false, err // inconsistent!
|
||||
}
|
||||
|
||||
return found, nil // matched!
|
||||
}
|
||||
|
||||
// ConjunctionInvariant represents a list of invariants which must all be true
|
||||
// together. In other words, it's a grouping construct for a set of invariants.
|
||||
type ConjunctionInvariant struct {
|
||||
@@ -206,6 +470,31 @@ func (obj *ConjunctionInvariant) String() string {
|
||||
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
||||
}
|
||||
|
||||
// ExprList returns the list of valid expressions in this invariant.
|
||||
func (obj *ConjunctionInvariant) ExprList() []interfaces.Expr {
|
||||
exprs := []interfaces.Expr{}
|
||||
for _, x := range obj.Invariants {
|
||||
exprs = append(exprs, x.ExprList()...)
|
||||
}
|
||||
return exprs
|
||||
}
|
||||
|
||||
// Matches returns whether an invariant matches the existing solution. If it is
|
||||
// inconsistent, then it errors.
|
||||
func (obj *ConjunctionInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
||||
found := true // assume true
|
||||
for _, invar := range obj.Invariants {
|
||||
match, err := invar.Matches(solved)
|
||||
if err != nil {
|
||||
return false, nil
|
||||
}
|
||||
if !match {
|
||||
found = false
|
||||
}
|
||||
}
|
||||
return found, nil
|
||||
}
|
||||
|
||||
// ExclusiveInvariant represents a list of invariants where one and *only* one
|
||||
// should hold true. To combine multiple invariants in one of the list elements,
|
||||
// you can group multiple invariants together using a ConjunctionInvariant. Do
|
||||
@@ -226,6 +515,54 @@ func (obj *ExclusiveInvariant) String() string {
|
||||
return fmt.Sprintf("[%s]", strings.Join(a, ", "))
|
||||
}
|
||||
|
||||
// ExprList returns the list of valid expressions in this invariant.
|
||||
func (obj *ExclusiveInvariant) ExprList() []interfaces.Expr {
|
||||
// XXX: We should do this if we assume that exclusives don't have some
|
||||
// sort of transient expr to satisfy that doesn't disappear depending on
|
||||
// which choice in the exclusive is chosen...
|
||||
//exprs := []interfaces.Expr{}
|
||||
//for _, x := range obj.Invariants {
|
||||
// exprs = append(exprs, x.ExprList()...)
|
||||
//}
|
||||
//return exprs
|
||||
// XXX: But if we ever specify an expr in this exclusive that isn't
|
||||
// referenced anywhere else, then we'd need to use the above so that our
|
||||
// type unification algorithm knows not to stop too early.
|
||||
return []interfaces.Expr{} // XXX: Do we want to the set instead?
|
||||
}
|
||||
|
||||
// Matches returns whether an invariant matches the existing solution. If it is
|
||||
// inconsistent, then it errors. Because this partial invariant requires only
|
||||
// one to be true, it will mask children errors, since it's normal for only one
|
||||
// to be consistent.
|
||||
func (obj *ExclusiveInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
||||
found := false
|
||||
reterr := fmt.Errorf("all exclusives errored")
|
||||
for _, invar := range obj.Invariants {
|
||||
match, err := invar.Matches(solved)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
if !match {
|
||||
// at least one was false, so we're not done here yet...
|
||||
// we don't want to error yet, since we can't know there
|
||||
// won't be a conflict once we get more data about this!
|
||||
reterr = nil // clear the error
|
||||
continue
|
||||
}
|
||||
if found { // we already found one
|
||||
return false, fmt.Errorf("more than one exclusive solution")
|
||||
}
|
||||
found = true
|
||||
}
|
||||
|
||||
if found { // we got exactly one valid solution
|
||||
return true, nil
|
||||
}
|
||||
|
||||
return false, reterr
|
||||
}
|
||||
|
||||
// exclusivesProduct returns a list of different products produced from the
|
||||
// combinatorial product of the list of exclusives. Each ExclusiveInvariant
|
||||
// must contain between one and more Invariants. This takes every combination of
|
||||
@@ -278,8 +615,30 @@ func (obj *AnyInvariant) String() string {
|
||||
return fmt.Sprintf("%p == *", obj.Expr)
|
||||
}
|
||||
|
||||
// ExprList returns the list of valid expressions in this invariant.
|
||||
func (obj *AnyInvariant) ExprList() []interfaces.Expr {
|
||||
return []interfaces.Expr{obj.Expr}
|
||||
}
|
||||
|
||||
// Matches returns whether an invariant matches the existing solution. If it is
|
||||
// inconsistent, then it errors.
|
||||
func (obj *AnyInvariant) Matches(solved map[interfaces.Expr]*types.Type) (bool, error) {
|
||||
_, exists := solved[obj.Expr] // we only care that it is found.
|
||||
return exists, nil
|
||||
}
|
||||
|
||||
// InvariantSolution lists a trivial set of EqualsInvariant mappings so that you
|
||||
// can populate your AST with SetType calls in a simple loop.
|
||||
type InvariantSolution struct {
|
||||
Solutions []*EqualsInvariant // list of trivial solutions for each node
|
||||
}
|
||||
|
||||
// ExprList returns the list of valid expressions. This struct is not part of
|
||||
// the invariant interface, but it implements this anyways.
|
||||
func (obj *InvariantSolution) ExprList() []interfaces.Expr {
|
||||
exprs := []interfaces.Expr{}
|
||||
for _, x := range obj.Solutions {
|
||||
exprs = append(exprs, x.ExprList()...)
|
||||
}
|
||||
return exprs
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user