lang: unification: Clean up the solver plumbing

This refactors the solver into a separate struct that can be extended as
needed.
This commit is contained in:
James Shubin
2024-03-16 01:38:33 -04:00
parent 849de648f0
commit ba6d816186

View File

@@ -65,9 +65,14 @@ const (
// SimpleInvariantSolver with the log parameter of your choice specified. The // SimpleInvariantSolver with the log parameter of your choice specified. The
// result satisfies the correct signature for the solver parameter of the // result satisfies the correct signature for the solver parameter of the
// Unification function. // Unification function.
// TODO: Get rid of this function and consider just using the struct directly.
func SimpleInvariantSolverLogger(logf func(format string, v ...interface{})) func(context.Context, []interfaces.Invariant, []interfaces.Expr) (*InvariantSolution, error) { func SimpleInvariantSolverLogger(logf func(format string, v ...interface{})) func(context.Context, []interfaces.Invariant, []interfaces.Expr) (*InvariantSolution, error) {
return func(ctx context.Context, invariants []interfaces.Invariant, expected []interfaces.Expr) (*InvariantSolution, error) { return func(ctx context.Context, invariants []interfaces.Invariant, expected []interfaces.Expr) (*InvariantSolution, error) {
return SimpleInvariantSolver(ctx, invariants, expected, logf) sis := &SimpleInvariantSolver{
Debug: false, // TODO: consider plumbing this through
Logf: logf,
}
return sis.Solve(ctx, invariants, expected)
} }
} }
@@ -196,8 +201,14 @@ func DebugSolverState(solved map[interfaces.Expr]*types.Type, equalities []inter
// SimpleInvariantSolver is an iterative invariant solver for AST expressions. // SimpleInvariantSolver is an iterative invariant solver for AST expressions.
// It is intended to be very simple, even if it's computationally inefficient. // It is intended to be very simple, even if it's computationally inefficient.
func SimpleInvariantSolver(ctx context.Context, invariants []interfaces.Invariant, expected []interfaces.Expr, logf func(format string, v ...interface{})) (*InvariantSolution, error) { // TODO: Move some of the global solver constants into this struct as params.
debug := false // XXX: add to interface type SimpleInvariantSolver struct {
Debug bool
Logf func(format string, v ...interface{})
}
// Solve is the actual solve implementation of the solver.
func (obj *SimpleInvariantSolver) Solve(ctx context.Context, invariants []interfaces.Invariant, expected []interfaces.Expr) (*InvariantSolution, error) {
process := func(invariants []interfaces.Invariant) ([]interfaces.Invariant, []*interfaces.ExclusiveInvariant, error) { process := func(invariants []interfaces.Invariant) ([]interfaces.Invariant, []*interfaces.ExclusiveInvariant, error) {
equalities := []interfaces.Invariant{} equalities := []interfaces.Invariant{}
exclusives := []*interfaces.ExclusiveInvariant{} exclusives := []*interfaces.ExclusiveInvariant{}
@@ -289,7 +300,7 @@ func SimpleInvariantSolver(ctx context.Context, invariants []interfaces.Invarian
} }
used = append(used, i) // mark equality as used up used = append(used, i) // mark equality as used up
} }
logf("%s: got %d equalities left after %d used up", Name, len(equalities)-len(used), len(used)) obj.Logf("%s: got %d equalities left after %d used up", Name, len(equalities)-len(used), len(used))
// delete used equalities, in reverse order to preserve indexing! // delete used equalities, in reverse order to preserve indexing!
for i := len(used) - 1; i >= 0; i-- { for i := len(used) - 1; i >= 0; i-- {
ix := used[i] // delete index that was marked as used! ix := used[i] // delete index that was marked as used!
@@ -304,9 +315,9 @@ func SimpleInvariantSolver(ctx context.Context, invariants []interfaces.Invarian
return equalities, exclusives, nil return equalities, exclusives, nil
} }
logf("%s: invariants:", Name) obj.Logf("%s: invariants:", Name)
for i, x := range invariants { for i, x := range invariants {
logf("invariant(%d): %T: %s", i, x, x) obj.Logf("invariant(%d): %T: %s", i, x, x)
} }
solved := make(map[interfaces.Expr]*types.Type) solved := make(map[interfaces.Expr]*types.Type)
@@ -392,7 +403,7 @@ func SimpleInvariantSolver(ctx context.Context, invariants []interfaces.Invarian
return active return active
} }
logf("%s: starting loop with %d equalities", Name, len(equalities)) obj.Logf("%s: starting loop with %d equalities", Name, len(equalities))
// run until we're solved, stop consuming equalities, or type clash // run until we're solved, stop consuming equalities, or type clash
Loop: Loop:
for { for {
@@ -408,14 +419,14 @@ Loop:
// Every generator gets to run once, and if that does not change // Every generator gets to run once, and if that does not change
// the result, then we mark it as inactive. // the result, then we mark it as inactive.
logf("%s: iterate...", Name) obj.Logf("%s: iterate...", Name)
if len(equalities) == 0 && len(exclusives) == 0 && activeGenerators() == 0 { if len(equalities) == 0 && len(exclusives) == 0 && activeGenerators() == 0 {
break // we're done, nothing left break // we're done, nothing left
} }
used := []int{} used := []int{}
for eqi := 0; eqi < len(equalities); eqi++ { for eqi := 0; eqi < len(equalities); eqi++ {
eqx := equalities[eqi] eqx := equalities[eqi]
logf("%s: match(%T): %+v", Name, eqx, eqx) obj.Logf("%s: match(%T): %+v", Name, eqx, eqx)
// TODO: could each of these cases be implemented as a // TODO: could each of these cases be implemented as a
// method on the Invariant type to simplify this code? // method on the Invariant type to simplify this code?
@@ -426,7 +437,7 @@ Loop:
if !exists { if !exists {
solved[eq.Expr] = eq.Type // yay, we learned something! solved[eq.Expr] = eq.Type // yay, we learned something!
used = append(used, eqi) // mark equality as used up used = append(used, eqi) // mark equality as used up
logf("%s: solved trivial equality", Name) obj.Logf("%s: solved trivial equality", Name)
continue continue
} }
// we already specified this, so check the repeat is consistent // we already specified this, so check the repeat is consistent
@@ -436,7 +447,7 @@ Loop:
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with equals") return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with equals")
} }
used = append(used, eqi) // mark equality as duplicate used = append(used, eqi) // mark equality as duplicate
logf("%s: duplicate trivial equality", Name) obj.Logf("%s: duplicate trivial equality", Name)
continue continue
// partials // partials
@@ -465,7 +476,7 @@ Loop:
if newTyp, exists := solved[y]; !exists { if newTyp, exists := solved[y]; !exists {
solved[y] = typ // yay, we learned something! solved[y] = typ // yay, we learned something!
//used = append(used, i) // mark equality as used up when complete! //used = append(used, i) // mark equality as used up when complete!
logf("%s: solved partial list val equality", Name) obj.Logf("%s: solved partial list val equality", Name)
} else if err := newTyp.Cmp(typ); err != nil { } else if err := newTyp.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial list val equality") return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial list val equality")
} }
@@ -504,7 +515,7 @@ Loop:
solved[eq.Expr1] = typ // yay, we learned something! solved[eq.Expr1] = typ // yay, we learned something!
solved[eq.Expr2Val] = typ.Val // yay, we learned something! solved[eq.Expr2Val] = typ.Val // yay, we learned something!
used = append(used, eqi) // mark equality as used up used = append(used, eqi) // mark equality as used up
logf("%s: solved list wrap partial", Name) obj.Logf("%s: solved list wrap partial", Name)
continue continue
} }
@@ -534,7 +545,7 @@ Loop:
if newTyp, exists := solved[y]; !exists { if newTyp, exists := solved[y]; !exists {
solved[y] = typ // yay, we learned something! solved[y] = typ // yay, we learned something!
//used = append(used, i) // mark equality as used up when complete! //used = append(used, i) // mark equality as used up when complete!
logf("%s: solved partial map key/val equality", Name) obj.Logf("%s: solved partial map key/val equality", Name)
} else if err := newTyp.Cmp(typ); err != nil { } else if err := newTyp.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial map key/val equality") return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial map key/val equality")
} }
@@ -585,7 +596,7 @@ Loop:
solved[eq.Expr2Key] = typ.Key // yay, we learned something! solved[eq.Expr2Key] = typ.Key // yay, we learned something!
solved[eq.Expr2Val] = typ.Val // yay, we learned something! solved[eq.Expr2Val] = typ.Val // yay, we learned something!
used = append(used, eqi) // mark equality as used up used = append(used, eqi) // mark equality as used up
logf("%s: solved map wrap partial", Name) obj.Logf("%s: solved map wrap partial", Name)
continue continue
} }
@@ -620,7 +631,7 @@ Loop:
if newTyp, exists := solved[y]; !exists { if newTyp, exists := solved[y]; !exists {
solved[y] = typ // yay, we learned something! solved[y] = typ // yay, we learned something!
//used = append(used, i) // mark equality as used up when complete! //used = append(used, i) // mark equality as used up when complete!
logf("%s: solved partial struct field equality", Name) obj.Logf("%s: solved partial struct field equality", Name)
} else if err := newTyp.Cmp(typ); err != nil { } else if err := newTyp.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial struct field equality") return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial struct field equality")
} }
@@ -669,7 +680,7 @@ Loop:
solved[y] = typ.Map[name] // yay, we learned something! solved[y] = typ.Map[name] // yay, we learned something!
} }
used = append(used, eqi) // mark equality as used up used = append(used, eqi) // mark equality as used up
logf("%s: solved struct wrap partial", Name) obj.Logf("%s: solved struct wrap partial", Name)
continue continue
} }
@@ -705,7 +716,7 @@ Loop:
if newTyp, exists := solved[y]; !exists { if newTyp, exists := solved[y]; !exists {
solved[y] = typ // yay, we learned something! solved[y] = typ // yay, we learned something!
//used = append(used, i) // mark equality as used up when complete! //used = append(used, i) // mark equality as used up when complete!
logf("%s: solved partial func arg equality", Name) obj.Logf("%s: solved partial func arg equality", Name)
} else if err := newTyp.Cmp(typ); err != nil { } else if err := newTyp.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial func arg equality") return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial func arg equality")
} }
@@ -729,7 +740,7 @@ Loop:
if newTyp, exists := solved[y]; !exists { if newTyp, exists := solved[y]; !exists {
solved[y] = typ // yay, we learned something! solved[y] = typ // yay, we learned something!
//used = append(used, i) // mark equality as used up when complete! //used = append(used, i) // mark equality as used up when complete!
logf("%s: solved partial func return equality", Name) obj.Logf("%s: solved partial func return equality", Name)
} else if err := newTyp.Cmp(typ); err != nil { } else if err := newTyp.Cmp(typ); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial func return equality") return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial func return equality")
} }
@@ -742,10 +753,10 @@ Loop:
} }
equivs := listConnectedFn(eq.Expr1, eqInvariants) // or equivalent! equivs := listConnectedFn(eq.Expr1, eqInvariants) // or equivalent!
if debug && len(equivs) > 0 { if obj.Debug && len(equivs) > 0 {
logf("%s: equiv %d: %p %+v", Name, len(equivs), eq.Expr1, eq.Expr1) obj.Logf("%s: equiv %d: %p %+v", Name, len(equivs), eq.Expr1, eq.Expr1)
for i, x := range equivs { for i, x := range equivs {
logf("%s: equiv(%d): %p %+v", Name, i, x, x) obj.Logf("%s: equiv(%d): %p %+v", Name, i, x, x)
} }
} }
// This determines if a pointer is equivalent to // This determines if a pointer is equivalent to
@@ -762,13 +773,13 @@ Loop:
for _, fn := range fnInvariants { for _, fn := range fnInvariants {
// is this fn.Expr1 related by equivalency graph to eq.Expr1 ? // is this fn.Expr1 related by equivalency graph to eq.Expr1 ?
if (eq.Expr1 != fn.Expr1) && !inEquiv(fn.Expr1) { if (eq.Expr1 != fn.Expr1) && !inEquiv(fn.Expr1) {
if debug { if obj.Debug {
logf("%s: equiv skip: %p %+v", Name, fn.Expr1, fn.Expr1) obj.Logf("%s: equiv skip: %p %+v", Name, fn.Expr1, fn.Expr1)
} }
continue continue
} }
if debug { if obj.Debug {
logf("%s: equiv used: %p %+v", Name, fn.Expr1, fn.Expr1) obj.Logf("%s: equiv used: %p %+v", Name, fn.Expr1, fn.Expr1)
} }
//if eq.Expr1 != fn.Expr1 { // previously //if eq.Expr1 != fn.Expr1 { // previously
// continue // continue
@@ -795,7 +806,7 @@ Loop:
Expr2: rhsExpr, Expr2: rhsExpr,
} }
if !eqContains(newEq, eqInvariants) { if !eqContains(newEq, eqInvariants) {
logf("%s: new equality: %p %+v <-> %p %+v", Name, newEq.Expr1, newEq.Expr1, newEq.Expr2, newEq.Expr2) obj.Logf("%s: new equality: %p %+v <-> %p %+v", Name, newEq.Expr1, newEq.Expr1, newEq.Expr2, newEq.Expr2)
eqInvariants = append(eqInvariants, newEq) eqInvariants = append(eqInvariants, newEq)
// TODO: add it as a generator instead? // TODO: add it as a generator instead?
equalities = append(equalities, newEq) equalities = append(equalities, newEq)
@@ -811,7 +822,7 @@ Loop:
if newTyp, exists := solved[rhsExpr]; !exists { if newTyp, exists := solved[rhsExpr]; !exists {
solved[rhsExpr] = lhsTyp // yay, we learned something! solved[rhsExpr] = lhsTyp // yay, we learned something!
//used = append(used, i) // mark equality as used up when complete! //used = append(used, i) // mark equality as used up when complete!
logf("%s: solved partial rhs func arg equality", Name) obj.Logf("%s: solved partial rhs func arg equality", Name)
} else if err := newTyp.Cmp(lhsTyp); err != nil { } else if err := newTyp.Cmp(lhsTyp); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial rhs func arg equality") return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial rhs func arg equality")
} }
@@ -831,7 +842,7 @@ Loop:
if newTyp, exists := solved[lhsExpr]; !exists { if newTyp, exists := solved[lhsExpr]; !exists {
solved[lhsExpr] = rhsTyp // yay, we learned something! solved[lhsExpr] = rhsTyp // yay, we learned something!
//used = append(used, i) // mark equality as used up when complete! //used = append(used, i) // mark equality as used up when complete!
logf("%s: solved partial lhs func arg equality", Name) obj.Logf("%s: solved partial lhs func arg equality", Name)
} else if err := newTyp.Cmp(rhsTyp); err != nil { } else if err := newTyp.Cmp(rhsTyp); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial lhs func arg equality") return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial lhs func arg equality")
} }
@@ -858,7 +869,7 @@ Loop:
Expr2: rhsExpr, Expr2: rhsExpr,
} }
if !eqContains(newEq, eqInvariants) { if !eqContains(newEq, eqInvariants) {
logf("%s: new equality: %p %+v <-> %p %+v", Name, newEq.Expr1, newEq.Expr1, newEq.Expr2, newEq.Expr2) obj.Logf("%s: new equality: %p %+v <-> %p %+v", Name, newEq.Expr1, newEq.Expr1, newEq.Expr2, newEq.Expr2)
eqInvariants = append(eqInvariants, newEq) eqInvariants = append(eqInvariants, newEq)
// TODO: add it as a generator instead? // TODO: add it as a generator instead?
equalities = append(equalities, newEq) equalities = append(equalities, newEq)
@@ -874,7 +885,7 @@ Loop:
if newTyp, exists := solved[rhsExpr]; !exists { if newTyp, exists := solved[rhsExpr]; !exists {
solved[rhsExpr] = lhsTyp // yay, we learned something! solved[rhsExpr] = lhsTyp // yay, we learned something!
//used = append(used, i) // mark equality as used up when complete! //used = append(used, i) // mark equality as used up when complete!
logf("%s: solved partial rhs func return equality", Name) obj.Logf("%s: solved partial rhs func return equality", Name)
} else if err := newTyp.Cmp(lhsTyp); err != nil { } else if err := newTyp.Cmp(lhsTyp); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial rhs func return equality") return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial rhs func return equality")
} }
@@ -894,7 +905,7 @@ Loop:
if newTyp, exists := solved[lhsExpr]; !exists { if newTyp, exists := solved[lhsExpr]; !exists {
solved[lhsExpr] = rhsTyp // yay, we learned something! solved[lhsExpr] = rhsTyp // yay, we learned something!
//used = append(used, i) // mark equality as used up when complete! //used = append(used, i) // mark equality as used up when complete!
logf("%s: solved partial lhs func return equality", Name) obj.Logf("%s: solved partial lhs func return equality", Name)
} else if err := newTyp.Cmp(rhsTyp); err != nil { } else if err := newTyp.Cmp(rhsTyp); err != nil {
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial lhs func return equality") return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with partial lhs func return equality")
} }
@@ -957,7 +968,7 @@ Loop:
} }
solved[eq.Expr2Out] = typ.Out // yay, we learned something! solved[eq.Expr2Out] = typ.Out // yay, we learned something!
used = append(used, eqi) // mark equality as used up used = append(used, eqi) // mark equality as used up
logf("%s: solved func wrap partial", Name) obj.Logf("%s: solved func wrap partial", Name)
continue continue
} }
@@ -993,7 +1004,7 @@ Loop:
solved[eq.Expr1] = typ // yay, we learned something! solved[eq.Expr1] = typ // yay, we learned something!
used = append(used, eqi) // mark equality as used up used = append(used, eqi) // mark equality as used up
logf("%s: solved call wrap partial", Name) obj.Logf("%s: solved call wrap partial", Name)
continue continue
} }
@@ -1013,19 +1024,19 @@ Loop:
return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with equality") return nil, errwrap.Wrapf(err, "can't unify, invariant illogicality with equality")
} }
used = append(used, eqi) // mark equality as used up used = append(used, eqi) // mark equality as used up
logf("%s: duplicate regular equality", Name) obj.Logf("%s: duplicate regular equality", Name)
continue continue
} }
if exists1 && !exists2 { // first equality already connects if exists1 && !exists2 { // first equality already connects
solved[eq.Expr2] = typ1 // yay, we learned something! solved[eq.Expr2] = typ1 // yay, we learned something!
used = append(used, eqi) // mark equality as used up used = append(used, eqi) // mark equality as used up
logf("%s: solved regular equality", Name) obj.Logf("%s: solved regular equality", Name)
continue continue
} }
if exists2 && !exists1 { // second equality already connects if exists2 && !exists1 { // second equality already connects
solved[eq.Expr1] = typ2 // yay, we learned something! solved[eq.Expr1] = typ2 // yay, we learned something!
used = append(used, eqi) // mark equality as used up used = append(used, eqi) // mark equality as used up
logf("%s: solved regular equality", Name) obj.Logf("%s: solved regular equality", Name)
continue continue
} }
@@ -1071,7 +1082,7 @@ Loop:
exclusives = append(exclusives, exs...) exclusives = append(exclusives, exs...)
used = append(used, eqi) // mark equality as used up used = append(used, eqi) // mark equality as used up
logf("%s: solved `generator` equality", Name) obj.Logf("%s: solved `generator` equality", Name)
// reset all other generator equality "inactive" flags // reset all other generator equality "inactive" flags
for _, x := range equalities { for _, x := range equalities {
gen, ok := x.(*interfaces.GeneratorInvariant) gen, ok := x.(*interfaces.GeneratorInvariant)
@@ -1088,7 +1099,7 @@ Loop:
// this basically ensures that the expr gets solved // this basically ensures that the expr gets solved
if _, exists := solved[eq.Expr]; exists { if _, exists := solved[eq.Expr]; exists {
used = append(used, eqi) // mark equality as used up used = append(used, eqi) // mark equality as used up
logf("%s: solved `any` equality", Name) obj.Logf("%s: solved `any` equality", Name)
} }
continue continue
@@ -1134,12 +1145,12 @@ Loop:
// same algorithm and code, so they're combined here... // same algorithm and code, so they're combined here...
_, isSolved := isSolvedFn(solved) _, isSolved := isSolvedFn(solved)
if isSolved { if isSolved {
logf("%s: solved early with %d exclusives left!", Name, len(exclusives)) obj.Logf("%s: solved early with %d exclusives left!", Name, len(exclusives))
} else { } else {
logf("%s: unsolved with %d exclusives left!", Name, len(exclusives)) obj.Logf("%s: unsolved with %d exclusives left!", Name, len(exclusives))
if debug { if obj.Debug {
for i, x := range exclusives { for i, x := range exclusives {
logf("%s: exclusive(%d) left: %s", Name, i, x) obj.Logf("%s: exclusive(%d) left: %s", Name, i, x)
} }
} }
} }
@@ -1155,13 +1166,13 @@ Loop:
} }
// check for consistency against remaining invariants // check for consistency against remaining invariants
logf("%s: checking for consistency against %d exclusives...", Name, len(exclusives)) obj.Logf("%s: checking for consistency against %d exclusives...", Name, len(exclusives))
done := []int{} done := []int{}
for i, invar := range exclusives { for i, invar := range exclusives {
// test each one to see if at least one works // test each one to see if at least one works
match, err := invar.Matches(solved) match, err := invar.Matches(solved)
if err != nil { if err != nil {
logf("exclusive invar failed: %+v", invar) obj.Logf("exclusive invar failed: %+v", invar)
return nil, errwrap.Wrapf(err, "inconsistent exclusive") return nil, errwrap.Wrapf(err, "inconsistent exclusive")
} }
if !match { if !match {
@@ -1169,7 +1180,7 @@ Loop:
} }
done = append(done, i) done = append(done, i)
} }
logf("%s: removed %d consistent exclusives...", Name, len(done)) obj.Logf("%s: removed %d consistent exclusives...", Name, len(done))
// Remove exclusives that matched correctly. // Remove exclusives that matched correctly.
for i := len(done) - 1; i >= 0; i-- { for i := len(done) - 1; i >= 0; i-- {
@@ -1201,7 +1212,7 @@ Loop:
} }
used = append(used, i) // mark equality as used up used = append(used, i) // mark equality as used up
} }
logf("%s: got %d equalities left after %d value invariants used up", Name, len(equalities)-len(used), len(used)) obj.Logf("%s: got %d equalities left after %d value invariants used up", Name, len(equalities)-len(used), len(used))
// delete used equalities, in reverse order to preserve indexing! // delete used equalities, in reverse order to preserve indexing!
for i := len(used) - 1; i >= 0; i-- { for i := len(used) - 1; i >= 0; i-- {
ix := used[i] // delete index that was marked as used! ix := used[i] // delete index that was marked as used!
@@ -1222,7 +1233,7 @@ Loop:
} }
used = append(used, i) // mark equality as used up used = append(used, i) // mark equality as used up
} }
logf("%s: got %d equalities left after %d generators used up", Name, len(equalities)-len(used), len(used)) obj.Logf("%s: got %d equalities left after %d generators used up", Name, len(equalities)-len(used), len(used))
// delete used equalities, in reverse order to preserve indexing! // delete used equalities, in reverse order to preserve indexing!
for i := len(used) - 1; i >= 0; i-- { for i := len(used) - 1; i >= 0; i-- {
ix := used[i] // delete index that was marked as used! ix := used[i] // delete index that was marked as used!
@@ -1236,7 +1247,7 @@ Loop:
// what have we learned for sure so far? // what have we learned for sure so far?
partialSolutions := []interfaces.Invariant{} partialSolutions := []interfaces.Invariant{}
logf("%s: %d solved, %d unsolved, and %d exclusives left", Name, len(solved), len(equalities), len(exclusives)) obj.Logf("%s: %d solved, %d unsolved, and %d exclusives left", Name, len(solved), len(equalities), len(exclusives))
if len(exclusives) > 0 { if len(exclusives) > 0 {
// FIXME: can we do this loop in a deterministic, sorted way? // FIXME: can we do this loop in a deterministic, sorted way?
for expr, typ := range solved { for expr, typ := range solved {
@@ -1245,16 +1256,16 @@ Loop:
Type: typ, Type: typ,
} }
partialSolutions = append(partialSolutions, invar) partialSolutions = append(partialSolutions, invar)
logf("%s: solved: %+v", Name, invar) obj.Logf("%s: solved: %+v", Name, invar)
} }
// also include anything that hasn't been solved yet // also include anything that hasn't been solved yet
for _, x := range equalities { for _, x := range equalities {
partialSolutions = append(partialSolutions, x) partialSolutions = append(partialSolutions, x)
logf("%s: unsolved: %+v", Name, x) obj.Logf("%s: unsolved: %+v", Name, x)
} }
} }
logf("%s: solver state:\n%s", Name, DebugSolverState(solved, equalities)) obj.Logf("%s: solver state:\n%s", Name, DebugSolverState(solved, equalities))
// Lastly, we could loop through each exclusive and see // Lastly, we could loop through each exclusive and see
// if it only has a single, easy solution. For example, // if it only has a single, easy solution. For example,
@@ -1266,7 +1277,7 @@ Loop:
// simplify method) so that if we're lucky, we rarely // simplify method) so that if we're lucky, we rarely
// need to run the raw exclusive combinatorial solver, // need to run the raw exclusive combinatorial solver,
// which is slow. // which is slow.
logf("%s: attempting to simplify %d exclusives...", Name, len(exclusives)) obj.Logf("%s: attempting to simplify %d exclusives...", Name, len(exclusives))
done = []int{} // clear for re-use done = []int{} // clear for re-use
simplified := []interfaces.Invariant{} simplified := []interfaces.Invariant{}
@@ -1275,13 +1286,13 @@ Loop:
// exclusives... We look at each individually. // exclusives... We look at each individually.
s, err := invar.Simplify(partialSolutions) // XXX: pass in the solver? s, err := invar.Simplify(partialSolutions) // XXX: pass in the solver?
if err != nil { if err != nil {
logf("exclusive simplification failed: %+v", invar) obj.Logf("exclusive simplification failed: %+v", invar)
continue continue
} }
done = append(done, i) done = append(done, i)
simplified = append(simplified, s...) simplified = append(simplified, s...)
} }
logf("%s: simplified %d exclusives...", Name, len(done)) obj.Logf("%s: simplified %d exclusives...", Name, len(done))
// Remove exclusives that matched correctly. // Remove exclusives that matched correctly.
for i := len(done) - 1; i >= 0; i-- { for i := len(done) - 1; i >= 0; i-- {
@@ -1307,12 +1318,12 @@ Loop:
// exclusive solver with a real SAT solver algorithm. // exclusive solver with a real SAT solver algorithm.
if !AllowRecursion || len(exclusives) > RecursionInvariantLimit { if !AllowRecursion || len(exclusives) > RecursionInvariantLimit {
logf("%s: %d solved, %d unsolved, and %d exclusives left", Name, len(solved), len(equalities), len(exclusives)) obj.Logf("%s: %d solved, %d unsolved, and %d exclusives left", Name, len(solved), len(equalities), len(exclusives))
for i, eq := range equalities { for i, eq := range equalities {
logf("%s: (%d) equality: %s", Name, i, eq) obj.Logf("%s: (%d) equality: %s", Name, i, eq)
} }
for i, ex := range exclusives { for i, ex := range exclusives {
logf("%s: (%d) exclusive: %s", Name, i, ex) obj.Logf("%s: (%d) exclusive: %s", Name, i, ex)
} }
// these can be very slow, so try to avoid them // these can be very slow, so try to avoid them
@@ -1327,7 +1338,7 @@ Loop:
default: default:
// pass // pass
} }
logf("%s: exclusive(%d):\n%+v", Name, i, ex) obj.Logf("%s: exclusive(%d):\n%+v", Name, i, ex)
// we could waste a lot of cpu, and start from // we could waste a lot of cpu, and start from
// the beginning, but instead we could use the // the beginning, but instead we could use the
// list of known solutions found and continue! // list of known solutions found and continue!
@@ -1336,29 +1347,29 @@ Loop:
recursiveInvariants = append(recursiveInvariants, partialSolutions...) recursiveInvariants = append(recursiveInvariants, partialSolutions...)
recursiveInvariants = append(recursiveInvariants, ex...) recursiveInvariants = append(recursiveInvariants, ex...)
// FIXME: implement RecursionDepthLimit // FIXME: implement RecursionDepthLimit
logf("%s: recursing...", Name) obj.Logf("%s: recursing...", Name)
solution, err := SimpleInvariantSolver(ctx, recursiveInvariants, expected, logf) solution, err := obj.Solve(ctx, recursiveInvariants, expected)
if err != nil { if err != nil {
logf("%s: recursive solution failed: %+v", Name, err) obj.Logf("%s: recursive solution failed: %+v", Name, err)
continue // no solution found here... continue // no solution found here...
} }
// solution found! // solution found!
logf("%s: recursive solution found!", Name) obj.Logf("%s: recursive solution found!", Name)
return solution, nil return solution, nil
} }
// TODO: print ambiguity // TODO: print ambiguity
logf("%s: ================ ambiguity ================", Name) obj.Logf("%s: ================ ambiguity ================", Name)
unsolved, isSolved := isSolvedFn(solved) unsolved, isSolved := isSolvedFn(solved)
logf("%s: isSolved: %+v", Name, isSolved) obj.Logf("%s: isSolved: %+v", Name, isSolved)
for _, x := range equalities { for _, x := range equalities {
logf("%s: unsolved equality: %+v", Name, x) obj.Logf("%s: unsolved equality: %+v", Name, x)
} }
for x := range unsolved { for x := range unsolved {
logf("%s: unsolved expected: (%p) %+v", Name, x, x) obj.Logf("%s: unsolved expected: (%p) %+v", Name, x, x)
} }
for expr, typ := range solved { for expr, typ := range solved {
logf("%s: solved: (%p) => %+v", Name, expr, typ) obj.Logf("%s: solved: (%p) => %+v", Name, expr, typ)
} }
return nil, ErrAmbiguous return nil, ErrAmbiguous
} }