resources, pgraph: split logical chunks into separate files
This commit is contained in:
485
pgraph/pgraph.go
485
pgraph/pgraph.go
@@ -20,19 +20,10 @@ package pgraph
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"log"
|
||||
"math"
|
||||
"os"
|
||||
"os/exec"
|
||||
"sort"
|
||||
"strconv"
|
||||
"sync"
|
||||
"syscall"
|
||||
"time"
|
||||
|
||||
"github.com/purpleidea/mgmt/event"
|
||||
"github.com/purpleidea/mgmt/global"
|
||||
"github.com/purpleidea/mgmt/resources"
|
||||
|
||||
errwrap "github.com/pkg/errors"
|
||||
@@ -258,89 +249,6 @@ func (v *Vertex) String() string {
|
||||
return fmt.Sprintf("%s[%s]", v.Res.Kind(), v.Res.GetName())
|
||||
}
|
||||
|
||||
// Graphviz outputs the graph in graphviz format.
|
||||
// https://en.wikipedia.org/wiki/DOT_%28graph_description_language%29
|
||||
func (g *Graph) Graphviz() (out string) {
|
||||
//digraph g {
|
||||
// label="hello world";
|
||||
// node [shape=box];
|
||||
// A [label="A"];
|
||||
// B [label="B"];
|
||||
// C [label="C"];
|
||||
// D [label="D"];
|
||||
// E [label="E"];
|
||||
// A -> B [label=f];
|
||||
// B -> C [label=g];
|
||||
// D -> E [label=h];
|
||||
//}
|
||||
out += fmt.Sprintf("digraph %s {\n", g.GetName())
|
||||
out += fmt.Sprintf("\tlabel=\"%s\";\n", g.GetName())
|
||||
//out += "\tnode [shape=box];\n"
|
||||
str := ""
|
||||
for i := range g.Adjacency { // reverse paths
|
||||
out += fmt.Sprintf("\t%s [label=\"%s[%s]\"];\n", i.GetName(), i.Kind(), i.GetName())
|
||||
for j := range g.Adjacency[i] {
|
||||
k := g.Adjacency[i][j]
|
||||
// use str for clearer output ordering
|
||||
str += fmt.Sprintf("\t%s -> %s [label=%s];\n", i.GetName(), j.GetName(), k.Name)
|
||||
}
|
||||
}
|
||||
out += str
|
||||
out += "}\n"
|
||||
return
|
||||
}
|
||||
|
||||
// ExecGraphviz writes out the graphviz data and runs the correct graphviz
|
||||
// filter command.
|
||||
func (g *Graph) ExecGraphviz(program, filename string) error {
|
||||
|
||||
switch program {
|
||||
case "dot", "neato", "twopi", "circo", "fdp":
|
||||
default:
|
||||
return fmt.Errorf("Invalid graphviz program selected!")
|
||||
}
|
||||
|
||||
if filename == "" {
|
||||
return fmt.Errorf("No filename given!")
|
||||
}
|
||||
|
||||
// run as a normal user if possible when run with sudo
|
||||
uid, err1 := strconv.Atoi(os.Getenv("SUDO_UID"))
|
||||
gid, err2 := strconv.Atoi(os.Getenv("SUDO_GID"))
|
||||
|
||||
err := ioutil.WriteFile(filename, []byte(g.Graphviz()), 0644)
|
||||
if err != nil {
|
||||
return fmt.Errorf("Error writing to filename!")
|
||||
}
|
||||
|
||||
if err1 == nil && err2 == nil {
|
||||
if err := os.Chown(filename, uid, gid); err != nil {
|
||||
return fmt.Errorf("Error changing file owner!")
|
||||
}
|
||||
}
|
||||
|
||||
path, err := exec.LookPath(program)
|
||||
if err != nil {
|
||||
return fmt.Errorf("Graphviz is missing!")
|
||||
}
|
||||
|
||||
out := fmt.Sprintf("%s.png", filename)
|
||||
cmd := exec.Command(path, "-Tpng", fmt.Sprintf("-o%s", out), filename)
|
||||
|
||||
if err1 == nil && err2 == nil {
|
||||
cmd.SysProcAttr = &syscall.SysProcAttr{}
|
||||
cmd.SysProcAttr.Credential = &syscall.Credential{
|
||||
Uid: uint32(uid),
|
||||
Gid: uint32(gid),
|
||||
}
|
||||
}
|
||||
_, err = cmd.Output()
|
||||
if err != nil {
|
||||
return fmt.Errorf("Error writing to image!")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// IncomingGraphEdges returns an array (slice) of all directed vertices to
|
||||
// vertex v (??? -> v). OKTimestamp should probably use this.
|
||||
func (g *Graph) IncomingGraphEdges(v *Vertex) []*Vertex {
|
||||
@@ -566,399 +474,6 @@ func (g *Graph) Reachability(a, b *Vertex) []*Vertex {
|
||||
return result
|
||||
}
|
||||
|
||||
// GetTimestamp returns the timestamp of a vertex
|
||||
func (v *Vertex) GetTimestamp() int64 {
|
||||
return v.timestamp
|
||||
}
|
||||
|
||||
// UpdateTimestamp updates the timestamp on a vertex and returns the new value
|
||||
func (v *Vertex) UpdateTimestamp() int64 {
|
||||
v.timestamp = time.Now().UnixNano() // update
|
||||
return v.timestamp
|
||||
}
|
||||
|
||||
// OKTimestamp returns true if this element can run right now?
|
||||
func (g *Graph) OKTimestamp(v *Vertex) bool {
|
||||
// these are all the vertices pointing TO v, eg: ??? -> v
|
||||
for _, n := range g.IncomingGraphEdges(v) {
|
||||
// if the vertex has a greater timestamp than any pre-req (n)
|
||||
// then we can't run right now...
|
||||
// if they're equal (eg: on init of 0) then we also can't run
|
||||
// b/c we should let our pre-req's go first...
|
||||
x, y := v.GetTimestamp(), n.GetTimestamp()
|
||||
if global.DEBUG {
|
||||
log.Printf("%s[%s]: OKTimestamp: (%v) >= %s[%s](%v): !%v", v.Kind(), v.GetName(), x, n.Kind(), n.GetName(), y, x >= y)
|
||||
}
|
||||
if x >= y {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Poke notifies nodes after me in the dependency graph that they need refreshing...
|
||||
// NOTE: this assumes that this can never fail or need to be rescheduled
|
||||
func (g *Graph) Poke(v *Vertex, activity bool) {
|
||||
// these are all the vertices pointing AWAY FROM v, eg: v -> ???
|
||||
for _, n := range g.OutgoingGraphEdges(v) {
|
||||
// XXX: if we're in state event and haven't been cancelled by
|
||||
// apply, then we can cancel a poke to a child, right? XXX
|
||||
// XXX: if n.Res.getState() != resources.ResStateEvent { // is this correct?
|
||||
if true { // XXX
|
||||
if global.DEBUG {
|
||||
log.Printf("%s[%s]: Poke: %s[%s]", v.Kind(), v.GetName(), n.Kind(), n.GetName())
|
||||
}
|
||||
n.SendEvent(event.EventPoke, false, activity) // XXX: can this be switched to sync?
|
||||
} else {
|
||||
if global.DEBUG {
|
||||
log.Printf("%s[%s]: Poke: %s[%s]: Skipped!", v.Kind(), v.GetName(), n.Kind(), n.GetName())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// BackPoke pokes the pre-requisites that are stale and need to run before I can run.
|
||||
func (g *Graph) BackPoke(v *Vertex) {
|
||||
// these are all the vertices pointing TO v, eg: ??? -> v
|
||||
for _, n := range g.IncomingGraphEdges(v) {
|
||||
x, y, s := v.GetTimestamp(), n.GetTimestamp(), n.Res.GetState()
|
||||
// if the parent timestamp needs poking AND it's not in state
|
||||
// ResStateEvent, then poke it. If the parent is in ResStateEvent it
|
||||
// means that an event is pending, so we'll be expecting a poke
|
||||
// back soon, so we can safely discard the extra parent poke...
|
||||
// TODO: implement a stateLT (less than) to tell if something
|
||||
// happens earlier in the state cycle and that doesn't wrap nil
|
||||
if x >= y && (s != resources.ResStateEvent && s != resources.ResStateCheckApply) {
|
||||
if global.DEBUG {
|
||||
log.Printf("%s[%s]: BackPoke: %s[%s]", v.Kind(), v.GetName(), n.Kind(), n.GetName())
|
||||
}
|
||||
n.SendEvent(event.EventBackPoke, false, false) // XXX: can this be switched to sync?
|
||||
} else {
|
||||
if global.DEBUG {
|
||||
log.Printf("%s[%s]: BackPoke: %s[%s]: Skipped!", v.Kind(), v.GetName(), n.Kind(), n.GetName())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Process is the primary function to execute for a particular vertex in the graph.
|
||||
func (g *Graph) Process(v *Vertex) error {
|
||||
obj := v.Res
|
||||
if global.DEBUG {
|
||||
log.Printf("%s[%s]: Process()", obj.Kind(), obj.GetName())
|
||||
}
|
||||
obj.SetState(resources.ResStateEvent)
|
||||
var ok = true
|
||||
var apply = false // did we run an apply?
|
||||
// is it okay to run dependency wise right now?
|
||||
// if not, that's okay because when the dependency runs, it will poke
|
||||
// us back and we will run if needed then!
|
||||
if g.OKTimestamp(v) {
|
||||
if global.DEBUG {
|
||||
log.Printf("%s[%s]: OKTimestamp(%v)", obj.Kind(), obj.GetName(), v.GetTimestamp())
|
||||
}
|
||||
|
||||
obj.SetState(resources.ResStateCheckApply)
|
||||
|
||||
// connect any senders to receivers and detect if values changed
|
||||
if changed, err := obj.SendRecv(obj); err != nil {
|
||||
return errwrap.Wrapf(err, "could not SendRecv in Process")
|
||||
} else if changed {
|
||||
obj.StateOK(false) // invalidate cache
|
||||
}
|
||||
|
||||
// if this fails, don't UpdateTimestamp()
|
||||
checkok, err := obj.CheckApply(!obj.Meta().Noop)
|
||||
if checkok && err != nil { // should never return this way
|
||||
log.Fatalf("%s[%s]: CheckApply(): %t, %+v", obj.Kind(), obj.GetName(), checkok, err)
|
||||
}
|
||||
if global.DEBUG {
|
||||
log.Printf("%s[%s]: CheckApply(): %t, %v", obj.Kind(), obj.GetName(), checkok, err)
|
||||
}
|
||||
|
||||
if !checkok { // if state *was* not ok, we had to have apply'ed
|
||||
if err != nil { // error during check or apply
|
||||
ok = false
|
||||
} else {
|
||||
apply = true
|
||||
}
|
||||
}
|
||||
|
||||
// when noop is true we always want to update timestamp
|
||||
if obj.Meta().Noop && err == nil {
|
||||
ok = true
|
||||
}
|
||||
|
||||
if ok {
|
||||
// update this timestamp *before* we poke or the poked
|
||||
// nodes might fail due to having a too old timestamp!
|
||||
v.UpdateTimestamp() // this was touched...
|
||||
obj.SetState(resources.ResStatePoking) // can't cancel parent poke
|
||||
g.Poke(v, apply)
|
||||
}
|
||||
// poke at our pre-req's instead since they need to refresh/run...
|
||||
return err
|
||||
}
|
||||
// else... only poke at the pre-req's that need to run
|
||||
go g.BackPoke(v)
|
||||
return nil
|
||||
}
|
||||
|
||||
// SentinelErr is a sentinal as an error type that wraps an arbitrary error.
|
||||
type SentinelErr struct {
|
||||
err error
|
||||
}
|
||||
|
||||
// Error is the required method to fulfill the error type.
|
||||
func (obj *SentinelErr) Error() string {
|
||||
return obj.err.Error()
|
||||
}
|
||||
|
||||
// Worker is the common run frontend of the vertex. It handles all of the retry
|
||||
// and retry delay common code, and ultimately returns the final status of this
|
||||
// vertex execution.
|
||||
func (g *Graph) Worker(v *Vertex) error {
|
||||
// listen for chan events from Watch() and run
|
||||
// the Process() function when they're received
|
||||
// this avoids us having to pass the data into
|
||||
// the Watch() function about which graph it is
|
||||
// running on, which isolates things nicely...
|
||||
obj := v.Res
|
||||
chanProcess := make(chan event.Event)
|
||||
go func() {
|
||||
running := false
|
||||
var timer = time.NewTimer(time.Duration(math.MaxInt64)) // longest duration
|
||||
if !timer.Stop() {
|
||||
<-timer.C // unnecessary, shouldn't happen
|
||||
}
|
||||
var delay = time.Duration(v.Meta().Delay) * time.Millisecond
|
||||
var retry = v.Meta().Retry // number of tries left, -1 for infinite
|
||||
var saved event.Event
|
||||
Loop:
|
||||
for {
|
||||
// this has to be synchronous, because otherwise the Res
|
||||
// event loop will keep running and change state,
|
||||
// causing the converged timeout to fire!
|
||||
select {
|
||||
case event, ok := <-chanProcess: // must use like this
|
||||
if running && ok {
|
||||
// we got an event that wasn't a close,
|
||||
// while we were waiting for the timer!
|
||||
// if this happens, it might be a bug:(
|
||||
log.Fatalf("%s[%s]: Worker: Unexpected event: %+v", v.Kind(), v.GetName(), event)
|
||||
}
|
||||
if !ok { // chanProcess closed, let's exit
|
||||
break Loop // no event, so no ack!
|
||||
}
|
||||
|
||||
// the above mentioned synchronous part, is the
|
||||
// running of this function, paired with an ack.
|
||||
if e := g.Process(v); e != nil {
|
||||
saved = event
|
||||
log.Printf("%s[%s]: CheckApply errored: %v", v.Kind(), v.GetName(), e)
|
||||
if retry == 0 {
|
||||
// wrap the error in the sentinel
|
||||
event.ACKNACK(&SentinelErr{e}) // fail the Watch()
|
||||
break Loop
|
||||
}
|
||||
if retry > 0 { // don't decrement the -1
|
||||
retry--
|
||||
}
|
||||
log.Printf("%s[%s]: CheckApply: Retrying after %.4f seconds (%d left)", v.Kind(), v.GetName(), delay.Seconds(), retry)
|
||||
// start the timer...
|
||||
timer.Reset(delay)
|
||||
running = true
|
||||
continue
|
||||
}
|
||||
retry = v.Meta().Retry // reset on success
|
||||
event.ACK() // sync
|
||||
|
||||
case <-timer.C:
|
||||
if !timer.Stop() {
|
||||
//<-timer.C // blocks, docs are wrong!
|
||||
}
|
||||
running = false
|
||||
log.Printf("%s[%s]: CheckApply delay expired!", v.Kind(), v.GetName())
|
||||
// re-send this failed event, to trigger a CheckApply()
|
||||
go func() { chanProcess <- saved }()
|
||||
// TODO: should we send a fake event instead?
|
||||
//saved = nil
|
||||
}
|
||||
}
|
||||
}()
|
||||
var err error // propagate the error up (this is a permanent BAD error!)
|
||||
// the watch delay runs inside of the Watch resource loop, so that it
|
||||
// can still process signals and exit if needed. It shouldn't run any
|
||||
// resource specific code since this is supposed to be a retry delay.
|
||||
// NOTE: we're using the same retry and delay metaparams that CheckApply
|
||||
// uses. This is for practicality. We can separate them later if needed!
|
||||
var watchDelay time.Duration
|
||||
var watchRetry = v.Meta().Retry // number of tries left, -1 for infinite
|
||||
// watch blocks until it ends, & errors to retry
|
||||
for {
|
||||
// TODO: do we have to stop the converged-timeout when in this block (perhaps we're in the delay block!)
|
||||
// TODO: should we setup/manage some of the converged timeout stuff in here anyways?
|
||||
|
||||
// if a retry-delay was requested, wait, but don't block our events!
|
||||
if watchDelay > 0 {
|
||||
//var pendingSendEvent bool
|
||||
timer := time.NewTimer(watchDelay)
|
||||
Loop:
|
||||
for {
|
||||
select {
|
||||
case <-timer.C: // the wait is over
|
||||
break Loop // critical
|
||||
|
||||
// TODO: resources could have a separate exit channel to avoid this complexity!?
|
||||
case event := <-obj.Events():
|
||||
// NOTE: this code should match the similar Res code!
|
||||
//cuid.SetConverged(false) // TODO: ?
|
||||
if exit, send := obj.ReadEvent(&event); exit {
|
||||
return nil // exit
|
||||
} else if send {
|
||||
// if we dive down this rabbit hole, our
|
||||
// timer.C won't get seen until we get out!
|
||||
// in this situation, the Watch() is blocked
|
||||
// from performing until CheckApply returns
|
||||
// successfully, or errors out. This isn't
|
||||
// so bad, but we should document it. Is it
|
||||
// possible that some resource *needs* Watch
|
||||
// to run to be able to execute a CheckApply?
|
||||
// That situation shouldn't be common, and
|
||||
// should probably not be allowed. Can we
|
||||
// avoid it though?
|
||||
//if exit, err := doSend(); exit || err != nil {
|
||||
// return err // we exit or bubble up a NACK...
|
||||
//}
|
||||
// Instead of doing the above, we can
|
||||
// add events to a pending list, and
|
||||
// when we finish the delay, we can run
|
||||
// them.
|
||||
//pendingSendEvent = true // all events are identical for now...
|
||||
}
|
||||
}
|
||||
}
|
||||
timer.Stop() // it's nice to cleanup
|
||||
log.Printf("%s[%s]: Watch delay expired!", v.Kind(), v.GetName())
|
||||
// NOTE: we can avoid the send if running Watch guarantees
|
||||
// one CheckApply event on startup!
|
||||
//if pendingSendEvent { // TODO: should this become a list in the future?
|
||||
// if exit, err := obj.DoSend(chanProcess, ""); exit || err != nil {
|
||||
// return err // we exit or bubble up a NACK...
|
||||
// }
|
||||
//}
|
||||
}
|
||||
|
||||
// TODO: reset the watch retry count after some amount of success
|
||||
e := v.Res.Watch(chanProcess)
|
||||
if e == nil { // exit signal
|
||||
err = nil // clean exit
|
||||
break
|
||||
}
|
||||
if sentinelErr, ok := e.(*SentinelErr); ok { // unwrap the sentinel
|
||||
err = sentinelErr.err
|
||||
break // sentinel means, perma-exit
|
||||
}
|
||||
log.Printf("%s[%s]: Watch errored: %v", v.Kind(), v.GetName(), e)
|
||||
if watchRetry == 0 {
|
||||
err = fmt.Errorf("Permanent watch error: %v", e)
|
||||
break
|
||||
}
|
||||
if watchRetry > 0 { // don't decrement the -1
|
||||
watchRetry--
|
||||
}
|
||||
watchDelay = time.Duration(v.Meta().Delay) * time.Millisecond
|
||||
log.Printf("%s[%s]: Watch: Retrying after %.4f seconds (%d left)", v.Kind(), v.GetName(), watchDelay.Seconds(), watchRetry)
|
||||
// We need to trigger a CheckApply after Watch restarts, so that
|
||||
// we catch any lost events that happened while down. We do this
|
||||
// by getting the Watch resource to send one event once it's up!
|
||||
//v.SendEvent(eventPoke, false, false)
|
||||
}
|
||||
close(chanProcess)
|
||||
return err
|
||||
}
|
||||
|
||||
// Start is a main kick to start the graph. It goes through in reverse topological
|
||||
// sort order so that events can't hit un-started vertices.
|
||||
func (g *Graph) Start(wg *sync.WaitGroup, first bool) { // start or continue
|
||||
log.Printf("State: %v -> %v", g.setState(graphStateStarting), g.getState())
|
||||
defer log.Printf("State: %v -> %v", g.setState(graphStateStarted), g.getState())
|
||||
t, _ := g.TopologicalSort()
|
||||
// TODO: only calculate indegree if `first` is true to save resources
|
||||
indegree := g.InDegree() // compute all of the indegree's
|
||||
for _, v := range Reverse(t) {
|
||||
|
||||
if !v.Res.IsWatching() { // if Watch() is not running...
|
||||
wg.Add(1)
|
||||
// must pass in value to avoid races...
|
||||
// see: https://ttboj.wordpress.com/2015/07/27/golang-parallelism-issues-causing-too-many-open-files-error/
|
||||
go func(vv *Vertex) {
|
||||
defer wg.Done()
|
||||
// TODO: if a sufficient number of workers error,
|
||||
// should something be done? Will these restart
|
||||
// after perma-failure if we have a graph change?
|
||||
if err := g.Worker(vv); err != nil { // contains the Watch and CheckApply loops
|
||||
log.Printf("%s[%s]: Exited with failure: %v", vv.Kind(), vv.GetName(), err)
|
||||
return
|
||||
}
|
||||
log.Printf("%s[%s]: Exited", vv.Kind(), vv.GetName())
|
||||
}(v)
|
||||
}
|
||||
|
||||
// selective poke: here we reduce the number of initial pokes
|
||||
// to the minimum required to activate every vertex in the
|
||||
// graph, either by direct action, or by getting poked by a
|
||||
// vertex that was previously activated. if we poke each vertex
|
||||
// that has no incoming edges, then we can be sure to reach the
|
||||
// whole graph. Please note: this may mask certain optimization
|
||||
// failures, such as any poke limiting code in Poke() or
|
||||
// BackPoke(). You might want to disable this selective start
|
||||
// when experimenting with and testing those elements.
|
||||
// if we are unpausing (since it's not the first run of this
|
||||
// function) we need to poke to *unpause* every graph vertex,
|
||||
// and not just selectively the subset with no indegree.
|
||||
if (!first) || indegree[v] == 0 {
|
||||
// ensure state is started before continuing on to next vertex
|
||||
for !v.SendEvent(event.EventStart, true, false) {
|
||||
if global.DEBUG {
|
||||
// if SendEvent fails, we aren't up yet
|
||||
log.Printf("%s[%s]: Retrying SendEvent(Start)", v.Kind(), v.GetName())
|
||||
// sleep here briefly or otherwise cause
|
||||
// a different goroutine to be scheduled
|
||||
time.Sleep(1 * time.Millisecond)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Pause sends pause events to the graph in a topological sort order.
|
||||
func (g *Graph) Pause() {
|
||||
log.Printf("State: %v -> %v", g.setState(graphStatePausing), g.getState())
|
||||
defer log.Printf("State: %v -> %v", g.setState(graphStatePaused), g.getState())
|
||||
t, _ := g.TopologicalSort()
|
||||
for _, v := range t { // squeeze out the events...
|
||||
v.SendEvent(event.EventPause, true, false)
|
||||
}
|
||||
}
|
||||
|
||||
// Exit sends exit events to the graph in a topological sort order.
|
||||
func (g *Graph) Exit() {
|
||||
if g == nil {
|
||||
return
|
||||
} // empty graph that wasn't populated yet
|
||||
t, _ := g.TopologicalSort()
|
||||
for _, v := range t { // squeeze out the events...
|
||||
// turn off the taps...
|
||||
// XXX: consider instead doing this by closing the Res.events channel instead?
|
||||
// XXX: do this by sending an exit signal, and then returning
|
||||
// when we hit the 'default' in the select statement!
|
||||
// XXX: we can do this to quiesce, but it's not necessary now
|
||||
|
||||
v.SendEvent(event.EventExit, true, false)
|
||||
}
|
||||
}
|
||||
|
||||
// GraphSync updates the oldGraph so that it matches the newGraph receiver. It
|
||||
// leaves identical elements alone so that they don't need to be refreshed.
|
||||
// FIXME: add test cases
|
||||
|
||||
Reference in New Issue
Block a user