Add grouping algorithm

This might not be fully correct, but it seems to be accurate so far. Of
particular note, the vertex order needs to be deterministic for this
algorithm, which isn't provided by a map, since golang intentionally
randomizes it. As a result, this also adds a sorted version of
GetVertices called GetVerticesSorted.
This commit is contained in:
James Shubin
2016-03-27 21:40:02 -04:00
parent c59f45a37b
commit 81c5ce40d4
4 changed files with 151 additions and 51 deletions

View File

@@ -25,6 +25,7 @@ import (
"log"
"os"
"os/exec"
"sort"
"strconv"
"sync"
"syscall"
@@ -183,7 +184,8 @@ func (g *Graph) NumEdges() int {
return count
}
// get an array (slice) of all vertices in the graph
// GetVertices returns a randomly sorted slice of all vertices in the graph
// The order is random, because the map implementation is intentionally so!
func (g *Graph) GetVertices() []*Vertex {
var vertices []*Vertex
for k := range g.Adjacency {
@@ -204,6 +206,23 @@ func (g *Graph) GetVerticesChan() chan *Vertex {
return ch
}
type VertexSlice []*Vertex
func (vs VertexSlice) Len() int { return len(vs) }
func (vs VertexSlice) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] }
func (vs VertexSlice) Less(i, j int) bool { return vs[i].String() < vs[j].String() }
// GetVerticesSorted returns a sorted slice of all vertices in the graph
// The order is sorted by String() to avoid the non-determinism in the map type
func (g *Graph) GetVerticesSorted() []*Vertex {
var vertices []*Vertex
for k := range g.Adjacency {
vertices = append(vertices, k)
}
sort.Sort(VertexSlice(vertices)) // add determinism
return vertices
}
// make the graph pretty print
func (g *Graph) String() string {
return fmt.Sprintf("Vertices(%d), Edges(%d)", g.NumVertices(), g.NumEdges())
@@ -546,22 +565,54 @@ func (g *Graph) VertexMerge(v1, v2 *Vertex, vertexMergeFn func(*Vertex, *Vertex)
// 2) edges that point towards v2 from X now point to v1 from X (no dupes)
for _, x := range g.IncomingGraphEdges(v2) { // all to vertex v (??? -> v)
e := g.Adjacency[x][v2] // previous edge
r := g.Reachability(x, v1)
// merge e with ex := g.Adjacency[x][v1] if it exists!
if ex, exists := g.Adjacency[x][v1]; exists && edgeMergeFn != nil {
if ex, exists := g.Adjacency[x][v1]; exists && edgeMergeFn != nil && len(r) == 0 {
e = edgeMergeFn(e, ex)
}
g.AddEdge(x, v1, e) // overwrite edge
if len(r) == 0 { // if not reachable, add it
g.AddEdge(x, v1, e) // overwrite edge
} else if edgeMergeFn != nil { // reachable, merge e through...
prev := x // initial condition
for i, next := range r {
if i == 0 {
// next == prev, therefore skip
continue
}
// this edge is from: prev, to: next
ex, _ := g.Adjacency[prev][next] // get
ex = edgeMergeFn(ex, e)
g.Adjacency[prev][next] = ex // set
prev = next
}
}
delete(g.Adjacency[x], v2) // delete old edge
}
// 3) edges that point from v2 to X now point from v1 to X (no dupes)
for _, x := range g.OutgoingGraphEdges(v2) { // all from vertex v (v -> ???)
e := g.Adjacency[v2][x] // previous edge
r := g.Reachability(v1, x)
// merge e with ex := g.Adjacency[v1][x] if it exists!
if ex, exists := g.Adjacency[v1][x]; exists && edgeMergeFn != nil {
if ex, exists := g.Adjacency[v1][x]; exists && edgeMergeFn != nil && len(r) == 0 {
e = edgeMergeFn(e, ex)
}
g.AddEdge(v1, x, e) // overwrite edge
if len(r) == 0 {
g.AddEdge(v1, x, e) // overwrite edge
} else if edgeMergeFn != nil { // reachable, merge e through...
prev := v1 // initial condition
for i, next := range r {
if i == 0 {
// next == prev, therefore skip
continue
}
// this edge is from: prev, to: next
ex, _ := g.Adjacency[prev][next]
ex = edgeMergeFn(ex, e)
g.Adjacency[prev][next] = ex
prev = next
}
}
delete(g.Adjacency[v2], x)
}