lang: core: Remove the unnecessary func suffix
We don't really need these, it's clear what things are.
This commit is contained in:
530
lang/core/fmt/printf.go
Normal file
530
lang/core/fmt/printf.go
Normal file
@@ -0,0 +1,530 @@
|
||||
// Mgmt
|
||||
// Copyright (C) 2013-2024+ James Shubin and the project contributors
|
||||
// Written by James Shubin <james@shubin.ca> and the project contributors
|
||||
//
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
//
|
||||
// Additional permission under GNU GPL version 3 section 7
|
||||
//
|
||||
// If you modify this program, or any covered work, by linking or combining it
|
||||
// with embedded mcl code and modules (and that the embedded mcl code and
|
||||
// modules which link with this program, contain a copy of their source code in
|
||||
// the authoritative form) containing parts covered by the terms of any other
|
||||
// license, the licensors of this program grant you additional permission to
|
||||
// convey the resulting work. Furthermore, the licensors of this program grant
|
||||
// the original author, James Shubin, additional permission to update this
|
||||
// additional permission if he deems it necessary to achieve the goals of this
|
||||
// additional permission.
|
||||
|
||||
package corefmt
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
|
||||
"github.com/purpleidea/mgmt/lang/funcs"
|
||||
"github.com/purpleidea/mgmt/lang/interfaces"
|
||||
"github.com/purpleidea/mgmt/lang/types"
|
||||
unificationUtil "github.com/purpleidea/mgmt/lang/unification/util"
|
||||
"github.com/purpleidea/mgmt/util"
|
||||
"github.com/purpleidea/mgmt/util/errwrap"
|
||||
)
|
||||
|
||||
const (
|
||||
// PrintfFuncName is the name this function is registered as.
|
||||
// FIXME: should this be named sprintf instead?
|
||||
PrintfFuncName = "printf"
|
||||
|
||||
// PrintfAllowNonStaticFormat allows us to use printf when the zeroth
|
||||
// argument (the format string) is not known statically at compile time.
|
||||
// The downside of this is that if it changes while we are running, it
|
||||
// could change from "hello %s" to "hello %d" or "%s %d...". If this
|
||||
// happens we can generate ugly format strings, instead of preventing it
|
||||
// from even running at all. The behaviour if this happens is determined
|
||||
// by PrintfAllowFormatError.
|
||||
//
|
||||
// NOTE: It's useful to allow dynamic strings if we were generating
|
||||
// custom log messages (for example) where the format comes from a
|
||||
// database lookup or similar. Of course if we knew that such a lookup
|
||||
// could be done quickly and statically (maybe it's a read from a local
|
||||
// key-value config file that's part of our deploy) then maybe we can do
|
||||
// it before unification speculatively.
|
||||
PrintfAllowNonStaticFormat = true
|
||||
|
||||
// PrintfAllowFormatError will cause the function to shutdown if it has
|
||||
// an invalid format string. Otherwise this will cause the output of the
|
||||
// function to return a garbled message. This is similar to golang's
|
||||
// format errors, eg: https://pkg.go.dev/fmt#hdr-Format_errors
|
||||
PrintfAllowFormatError = true
|
||||
|
||||
printfArgNameFormat = "format" // name of the first arg
|
||||
)
|
||||
|
||||
func init() {
|
||||
funcs.ModuleRegister(ModuleName, PrintfFuncName, func() interfaces.Func { return &PrintfFunc{} })
|
||||
}
|
||||
|
||||
var _ interfaces.InferableFunc = &PrintfFunc{} // ensure it meets this expectation
|
||||
|
||||
// PrintfFunc is a static polymorphic function that compiles a format string and
|
||||
// returns the output as a string. It bases its output on the values passed in
|
||||
// to it. It examines the type of the arguments at compile time and then
|
||||
// determines the static function signature by parsing the format string and
|
||||
// using that to determine the final function signature. One consequence of this
|
||||
// is that the format string must be a static string which is known at compile
|
||||
// time. This is reasonable, because if it was a reactive, changing string, then
|
||||
// we could expect the type signature to change, which is not allowed in our
|
||||
// statically typed language.
|
||||
type PrintfFunc struct {
|
||||
Type *types.Type // final full type of our function
|
||||
|
||||
init *interfaces.Init
|
||||
last types.Value // last value received to use for diff
|
||||
|
||||
result *string // last calculated output
|
||||
}
|
||||
|
||||
// String returns a simple name for this function. This is needed so this struct
|
||||
// can satisfy the pgraph.Vertex interface.
|
||||
func (obj *PrintfFunc) String() string {
|
||||
return fmt.Sprintf("%s@%p", PrintfFuncName, obj) // be more unique!
|
||||
}
|
||||
|
||||
// ArgGen returns the Nth arg name for this function.
|
||||
func (obj *PrintfFunc) ArgGen(index int) (string, error) {
|
||||
if index == 0 {
|
||||
return printfArgNameFormat, nil
|
||||
}
|
||||
// TODO: if index is big enough that it would return the string in
|
||||
// `printfArgNameFormat` then we should return an error! (Nearly impossible.)
|
||||
return util.NumToAlpha(index - 1), nil
|
||||
}
|
||||
|
||||
// FuncInfer takes partial type and value information from the call site of this
|
||||
// function so that it can build an appropriate type signature for it. The type
|
||||
// signature may include unification variables.
|
||||
func (obj *PrintfFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) {
|
||||
// func(format str, args... variant) string
|
||||
|
||||
if len(partialValues) < 1 {
|
||||
return nil, nil, fmt.Errorf("must have at least one arg")
|
||||
}
|
||||
if len(partialType.Map) < 1 {
|
||||
// programming error?
|
||||
return nil, nil, fmt.Errorf("must have at least one arg")
|
||||
}
|
||||
if typ := partialType.Map[partialType.Ord[0]]; typ != nil && typ.Cmp(types.TypeStr) != nil && !typ.HasUni() {
|
||||
return nil, nil, fmt.Errorf("format string was a %s", typ)
|
||||
}
|
||||
|
||||
getType := func(i int) *types.Type { // get Nth type, doesn't bound check
|
||||
if partialValues[i] != nil {
|
||||
// We don't check that this is consistent with
|
||||
// partialType, because that's a compiler job.
|
||||
return partialValues[i].Type() // got it!
|
||||
}
|
||||
if partialType == nil || partialType.Map == nil {
|
||||
return nil // no more information
|
||||
}
|
||||
return partialType.Map[partialType.Ord[i]]
|
||||
}
|
||||
|
||||
getFormat := func() *string {
|
||||
if partialValues[0] == nil {
|
||||
return nil // no more information
|
||||
}
|
||||
typ := partialValues[0].Type()
|
||||
if typ == nil || typ.Cmp(types.TypeStr) != nil {
|
||||
return nil // no more information
|
||||
}
|
||||
|
||||
formatString := partialValues[0].Str()
|
||||
return &formatString
|
||||
}
|
||||
|
||||
typList := make([]*types.Type, len(partialValues)) // number of args at call site
|
||||
|
||||
for i := range partialValues { // populate initial expected types
|
||||
typList[i] = getType(i) // nil if missing
|
||||
}
|
||||
|
||||
// Do we have type information from the format string? (If it exists!)
|
||||
if format := getFormat(); format != nil {
|
||||
// formatList doesn't contain zeroth arg in our typList!
|
||||
formatList, err := parseFormatToTypeList(*format)
|
||||
if err != nil {
|
||||
return nil, nil, errwrap.Wrapf(err, "could not parse format string")
|
||||
}
|
||||
for i, x := range typList {
|
||||
if i == 0 { // format string
|
||||
continue
|
||||
}
|
||||
if x == nil { // nothing to check against
|
||||
typList[i] = formatList[i-1] // use this!
|
||||
continue
|
||||
}
|
||||
|
||||
// NOTE: Is it okay to allow unification variables here?
|
||||
//if x.HasUni() {
|
||||
// // programming error (did the compiler change?)
|
||||
// return nil, nil, fmt.Errorf("programming error at arg index %d", i)
|
||||
//}
|
||||
if err := unificationUtil.UnifyCmp(x, formatList[i-1]); err != nil {
|
||||
return nil, nil, errwrap.Wrapf(err, "inconsistent type at arg index %d", i)
|
||||
}
|
||||
// Less general version of the above...
|
||||
//if err := x.Cmp(formatList[i-1]); err != nil {
|
||||
// return nil, nil, errwrap.Wrapf(err, "inconsistent type at arg index %d", i)
|
||||
//}
|
||||
}
|
||||
} else if !PrintfAllowNonStaticFormat {
|
||||
return nil, nil, fmt.Errorf("format string is not known statically")
|
||||
}
|
||||
|
||||
// Check the format string is consistent with what we've found earlier!
|
||||
if i := 0; typList[i] != nil && typList[i].Cmp(types.TypeStr) != nil && !typList[i].HasUni() {
|
||||
return nil, nil, fmt.Errorf("inconsistent type at arg index %d (format string)", i)
|
||||
}
|
||||
typList[0] = types.TypeStr // format string (zeroth arg)
|
||||
|
||||
mapped := map[string]*types.Type{}
|
||||
ordered := []string{}
|
||||
|
||||
for i, x := range typList {
|
||||
argName, err := obj.ArgGen(i)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
//if x.HasVariant() {
|
||||
// x = x.VariantToUni() // converts %[]v style things
|
||||
//}
|
||||
if x == nil || x == types.TypeVariant { // a %v or something unknown
|
||||
x = &types.Type{
|
||||
Kind: types.KindUnification,
|
||||
Uni: types.NewElem(), // unification variable, eg: ?1
|
||||
}
|
||||
}
|
||||
|
||||
mapped[argName] = x
|
||||
ordered = append(ordered, argName)
|
||||
}
|
||||
|
||||
typ := &types.Type{ // this full function
|
||||
Kind: types.KindFunc,
|
||||
Map: mapped,
|
||||
Ord: ordered,
|
||||
Out: types.TypeStr,
|
||||
}
|
||||
|
||||
return typ, []*interfaces.UnificationInvariant{}, nil
|
||||
}
|
||||
|
||||
// Build takes the now known function signature and stores it so that this
|
||||
// function can appear to be static. That type is used to build our function
|
||||
// statically.
|
||||
func (obj *PrintfFunc) Build(typ *types.Type) (*types.Type, error) {
|
||||
if typ.Kind != types.KindFunc {
|
||||
return nil, fmt.Errorf("input type must be of kind func")
|
||||
}
|
||||
if len(typ.Ord) < 1 {
|
||||
return nil, fmt.Errorf("the printf function needs at least one arg")
|
||||
}
|
||||
if typ.Out == nil {
|
||||
return nil, fmt.Errorf("return type of function must be specified")
|
||||
}
|
||||
if typ.Out.Cmp(types.TypeStr) != nil {
|
||||
return nil, fmt.Errorf("return type of function must be an str")
|
||||
}
|
||||
if typ.Map == nil {
|
||||
return nil, fmt.Errorf("invalid input type")
|
||||
}
|
||||
|
||||
t0, exists := typ.Map[typ.Ord[0]]
|
||||
if !exists || t0 == nil {
|
||||
return nil, fmt.Errorf("first arg must be specified")
|
||||
}
|
||||
if t0.Cmp(types.TypeStr) != nil {
|
||||
return nil, fmt.Errorf("first arg for printf must be an str")
|
||||
}
|
||||
|
||||
//newTyp := typ.Copy()
|
||||
newTyp := &types.Type{
|
||||
Kind: typ.Kind, // copy
|
||||
Map: make(map[string]*types.Type), // new
|
||||
Ord: []string{}, // new
|
||||
Out: typ.Out, // copy
|
||||
}
|
||||
for i, x := range typ.Ord { // remap arg names
|
||||
argName, err := obj.ArgGen(i)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
newTyp.Map[argName] = typ.Map[x]
|
||||
newTyp.Ord = append(newTyp.Ord, argName)
|
||||
}
|
||||
|
||||
obj.Type = newTyp // function type is now known!
|
||||
return obj.Type, nil
|
||||
}
|
||||
|
||||
// Validate makes sure we've built our struct properly. It is usually unused for
|
||||
// normal functions that users can use directly.
|
||||
func (obj *PrintfFunc) Validate() error {
|
||||
if obj.Type == nil { // build must be run first
|
||||
return fmt.Errorf("type is still unspecified")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Info returns some static info about itself.
|
||||
func (obj *PrintfFunc) Info() *interfaces.Info {
|
||||
// Since this function implements FuncInfer we want sig to return nil to
|
||||
// avoid an accidental return of unification variables when we should be
|
||||
// getting them from FuncInfer, and not from here. (During unification!)
|
||||
return &interfaces.Info{
|
||||
Pure: true,
|
||||
Memo: false,
|
||||
Sig: obj.Type,
|
||||
Err: obj.Validate(),
|
||||
}
|
||||
}
|
||||
|
||||
// Init runs some startup code for this function.
|
||||
func (obj *PrintfFunc) Init(init *interfaces.Init) error {
|
||||
obj.init = init
|
||||
return nil
|
||||
}
|
||||
|
||||
// Stream returns the changing values that this func has over time.
|
||||
func (obj *PrintfFunc) Stream(ctx context.Context) error {
|
||||
defer close(obj.init.Output) // the sender closes
|
||||
for {
|
||||
select {
|
||||
case input, ok := <-obj.init.Input:
|
||||
if !ok {
|
||||
return nil // can't output any more
|
||||
}
|
||||
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
|
||||
// return errwrap.Wrapf(err, "wrong function input")
|
||||
//}
|
||||
|
||||
if obj.last != nil && input.Cmp(obj.last) == nil {
|
||||
continue // value didn't change, skip it
|
||||
}
|
||||
obj.last = input // store for next
|
||||
|
||||
format := input.Struct()[printfArgNameFormat].Str()
|
||||
values := []types.Value{}
|
||||
for _, name := range obj.Type.Ord {
|
||||
if name == printfArgNameFormat { // skip format arg
|
||||
continue
|
||||
}
|
||||
x := input.Struct()[name]
|
||||
values = append(values, x)
|
||||
}
|
||||
|
||||
result, err := compileFormatToString(format, values)
|
||||
if err != nil {
|
||||
return err // no errwrap needed b/c helper func
|
||||
}
|
||||
|
||||
if obj.result != nil && *obj.result == result {
|
||||
continue // result didn't change
|
||||
}
|
||||
obj.result = &result // store new result
|
||||
|
||||
case <-ctx.Done():
|
||||
return nil
|
||||
}
|
||||
|
||||
select {
|
||||
case obj.init.Output <- &types.StrValue{
|
||||
V: *obj.result,
|
||||
}:
|
||||
case <-ctx.Done():
|
||||
return nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// valueToString prints our values how we expect for printf.
|
||||
// FIXME: if this turns out to be useful, add it to the types package.
|
||||
func valueToString(value types.Value) string {
|
||||
switch x := value.Type().Kind; x {
|
||||
// FIXME: floats don't print nicely: https://github.com/golang/go/issues/46118
|
||||
case types.KindFloat:
|
||||
// TODO: use formatting flags ?
|
||||
// FIXME: Our String() method in FloatValue doesn't print nicely
|
||||
return value.String()
|
||||
}
|
||||
|
||||
// FIXME: this is just an "easy-out" implementation for now...
|
||||
return fmt.Sprintf("%v", value.Value())
|
||||
|
||||
//switch x := value.Type().Kind; x {
|
||||
//case types.KindBool:
|
||||
// return value.String()
|
||||
//case types.KindStr:
|
||||
// return value.Str() // use this since otherwise it adds " & "
|
||||
//case types.KindInt:
|
||||
// return value.String()
|
||||
//case types.KindFloat:
|
||||
// // TODO: use formatting flags ?
|
||||
// return value.String()
|
||||
//}
|
||||
//panic("unhandled type") // TODO: not fully implemented yet
|
||||
}
|
||||
|
||||
// parseFormatToTypeList takes a format string and returns a list of types that
|
||||
// it expects to use in the order found in the format string. This can also
|
||||
// handle the %v special variant type in the format string.
|
||||
// FIXME: add support for more types, and add tests!
|
||||
func parseFormatToTypeList(format string) ([]*types.Type, error) {
|
||||
typList := []*types.Type{}
|
||||
inType := false
|
||||
for i := 0; i < len(format); i++ {
|
||||
|
||||
// some normal char...
|
||||
if !inType && format[i] != '%' {
|
||||
continue
|
||||
}
|
||||
|
||||
// in a type or we're a %
|
||||
if format[i] == '%' {
|
||||
if inType {
|
||||
// it's a %%
|
||||
inType = false
|
||||
} else {
|
||||
// start looking for type specification!
|
||||
inType = true
|
||||
}
|
||||
continue
|
||||
}
|
||||
|
||||
// we must be in a type
|
||||
switch format[i] {
|
||||
case 't':
|
||||
typList = append(typList, types.TypeBool)
|
||||
case 's':
|
||||
typList = append(typList, types.TypeStr)
|
||||
case 'd':
|
||||
typList = append(typList, types.TypeInt)
|
||||
|
||||
// TODO: parse fancy formats like %0.2f and stuff
|
||||
case 'f':
|
||||
typList = append(typList, types.TypeFloat)
|
||||
|
||||
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
|
||||
|
||||
// special!
|
||||
case 'v':
|
||||
//typList = append(typList, types.TypeVariant) // old
|
||||
typList = append(typList, types.NewType("?1")) // uni!
|
||||
|
||||
default:
|
||||
return nil, fmt.Errorf("invalid format string at %d", i)
|
||||
}
|
||||
inType = false // done
|
||||
}
|
||||
|
||||
return typList, nil
|
||||
}
|
||||
|
||||
// compileFormatToString takes a format string and a list of values and returns
|
||||
// the compiled/templated output. This can also handle the %v special variant
|
||||
// type in the format string. Of course the corresponding value to those %v
|
||||
// entries must have a static, fixed, precise type. If someone changes the
|
||||
// format string during runtime, then that's their fault, and this could error.
|
||||
// Depending on PrintfAllowFormatError, we should NOT error if we have a
|
||||
// mismatch between the format string and the available args. Return similar to
|
||||
// golang's EXTRA/MISSING, eg: https://pkg.go.dev/fmt#hdr-Format_errors
|
||||
// TODO: implement better format errors support
|
||||
// FIXME: add support for more types, and add tests!
|
||||
func compileFormatToString(format string, values []types.Value) (string, error) {
|
||||
output := ""
|
||||
ix := 0
|
||||
inType := false
|
||||
for i := 0; i < len(format); i++ {
|
||||
|
||||
// some normal char...
|
||||
if !inType && format[i] != '%' {
|
||||
output += string(format[i])
|
||||
continue
|
||||
}
|
||||
|
||||
// in a type or we're a %
|
||||
if format[i] == '%' {
|
||||
if inType {
|
||||
// it's a %%
|
||||
output += string(format[i])
|
||||
inType = false
|
||||
} else {
|
||||
// start looking for type specification!
|
||||
inType = true
|
||||
}
|
||||
continue
|
||||
}
|
||||
|
||||
// we must be in a type
|
||||
var typ *types.Type
|
||||
switch format[i] {
|
||||
case 't':
|
||||
typ = types.TypeBool
|
||||
case 's':
|
||||
typ = types.TypeStr
|
||||
case 'd':
|
||||
typ = types.TypeInt
|
||||
|
||||
// TODO: parse fancy formats like %0.2f and stuff
|
||||
case 'f':
|
||||
typ = types.TypeFloat
|
||||
|
||||
// FIXME: add fancy types like: %[]s, %[]f, %{s:f}, etc...
|
||||
|
||||
case 'v':
|
||||
typ = types.TypeVariant
|
||||
|
||||
default:
|
||||
// TODO: improve the output of this
|
||||
if !PrintfAllowFormatError {
|
||||
return fmt.Sprintf("<invalid format `%v` at %d>", format[i], i), nil
|
||||
}
|
||||
return "", fmt.Errorf("invalid format string at %d", i)
|
||||
}
|
||||
inType = false // done
|
||||
|
||||
if ix >= len(values) {
|
||||
// TODO: improve the output of this
|
||||
if !PrintfAllowFormatError {
|
||||
return fmt.Sprintf("<invalid format length `%d` at %d>", ix, i), nil
|
||||
}
|
||||
return "", fmt.Errorf("more specifiers (%d) than values (%d)", ix+1, len(values))
|
||||
}
|
||||
|
||||
// check the type (if not a variant) matches what we have...
|
||||
if typ == types.TypeVariant {
|
||||
if values[ix].Type() == nil {
|
||||
return "", fmt.Errorf("unexpected nil type")
|
||||
}
|
||||
} else if err := typ.Cmp(values[ix].Type()); err != nil {
|
||||
return "", errwrap.Wrapf(err, "unexpected type")
|
||||
}
|
||||
|
||||
output += valueToString(values[ix])
|
||||
ix++ // consume one value
|
||||
}
|
||||
|
||||
return output, nil
|
||||
}
|
||||
Reference in New Issue
Block a user