lang: core: Simplify implementation of the "contains" function

This commit is contained in:
James Shubin
2025-02-26 18:12:38 -05:00
parent d7ecc72b41
commit 37fffce9f5

View File

@@ -31,146 +31,32 @@ package core
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/funcs/simple"
"github.com/purpleidea/mgmt/lang/types"
)
const (
// ContainsFuncName is the name this function is registered as.
ContainsFuncName = funcs.ContainsFuncName
// arg names...
containsArgNameNeedle = "needle"
containsArgNameHaystack = "haystack"
)
func init() {
funcs.Register(ContainsFuncName, func() interfaces.Func { return &ContainsFunc{} }) // must register the func and name
simple.Register(ContainsFuncName, &simple.Scaffold{
T: types.NewType("func(needle ?1, haystack []?1) bool"),
F: Contains,
})
}
var _ interfaces.BuildableFunc = &ContainsFunc{} // ensure it meets this expectation
// Contains checks if a needle exists in a haystack, which is a list.
func Contains(ctx context.Context, input []types.Value) (types.Value, error) {
needle := input[0] // ?1
haystack := (input[1]).(*types.ListValue) // []?1
// ContainsFunc returns true if a value is found in a list. Otherwise false.
type ContainsFunc struct {
Type *types.Type // this is the type of value stored in our list
_, exists := haystack.Contains(needle)
init *interfaces.Init
last types.Value // last value received to use for diff
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *ContainsFunc) String() string {
return ContainsFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *ContainsFunc) ArgGen(index int) (string, error) {
seq := []string{containsArgNameNeedle, containsArgNameHaystack}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// helper
func (obj *ContainsFunc) sig() *types.Type {
// func(needle ?1, haystack []?1) bool
s := "?1"
if obj.Type != nil { // don't panic if called speculatively
s = obj.Type.String() // if solved
}
return types.NewType(fmt.Sprintf("func(%s %s, %s []%s) bool", containsArgNameNeedle, s, containsArgNameHaystack, s))
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *ContainsFunc) Build(typ *types.Type) (*types.Type, error) {
// We don't need to check that this matches, or that .Map has the right
// length, because otherwise it would mean type unification is giving a
// bad solution, which would be a major bug. Check to avoid any panics.
// Other functions might need to check something if they only accept a
// limited subset of the original type unification variables signature.
//if err := unificationUtil.UnifyCmp(typ, obj.sig()); err != nil {
// return nil, err
//}
obj.Type = typ.Map[typ.Ord[0]] // type of value stored in our list
return obj.sig(), nil
}
// Validate tells us if the input struct takes a valid form.
func (obj *ContainsFunc) Validate() error {
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
return nil
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *ContainsFunc) Info() *interfaces.Info {
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: obj.sig(), // helper, func kind
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *ContainsFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *ContainsFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
needle := input.Struct()[containsArgNameNeedle]
haystack := (input.Struct()[containsArgNameHaystack]).(*types.ListValue)
_, exists := haystack.Contains(needle)
var result types.Value = &types.BoolValue{V: exists}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-ctx.Done():
return nil
}
}
return &types.BoolValue{
V: exists,
}, nil
}