lang: funcs: core: iter: Finish map function
This was the goal all along. Proper iteration without for loops. Yay! Co-authored-by: Samuel Gélineau <gelisam@gmail.com>
This commit is contained in:
13
examples/lang/map-iterator0.mcl
Normal file
13
examples/lang/map-iterator0.mcl
Normal file
@@ -0,0 +1,13 @@
|
||||
import "iter"
|
||||
|
||||
$fn = func($x) { # notable because concrete type is fn(t1) t2, where t1 != t2
|
||||
len($x)
|
||||
}
|
||||
|
||||
$in1 = ["a", "bb", "ccc", "dddd", "eeeee",]
|
||||
|
||||
$out1 = iter.map($in1, $fn)
|
||||
|
||||
$t1 = template("out1: {{ . }}", $out1)
|
||||
|
||||
test $t1 {}
|
||||
28
examples/lang/map-iterator1.mcl
Normal file
28
examples/lang/map-iterator1.mcl
Normal file
@@ -0,0 +1,28 @@
|
||||
import "datetime"
|
||||
import "iter"
|
||||
import "math"
|
||||
|
||||
$now = datetime.now()
|
||||
|
||||
# alternate every four seconds
|
||||
$mod0 = math.mod($now, 8) == 0
|
||||
$mod1 = math.mod($now, 8) == 1
|
||||
$mod2 = math.mod($now, 8) == 2
|
||||
$mod3 = math.mod($now, 8) == 3
|
||||
$mod = $mod0 || $mod1 || $mod2 || $mod3
|
||||
|
||||
$fn = func($x) { # notable because concrete type is fn(t1) t2, where t1 != t2
|
||||
len($x)
|
||||
}
|
||||
|
||||
$in1 = if $mod {
|
||||
["a", "bb", "ccc", "dddd", "eeeee",]
|
||||
} else {
|
||||
["ffffff", "ggggggg", "hhhhhhhh", "iiiiiiiii", "jjjjjjjjjj",]
|
||||
}
|
||||
|
||||
$out1 = iter.map($in1, $fn)
|
||||
|
||||
$t1 = template("out1: {{ . }}", $out1)
|
||||
|
||||
test $t1 {}
|
||||
49
examples/lang/map-iterator2.mcl
Normal file
49
examples/lang/map-iterator2.mcl
Normal file
@@ -0,0 +1,49 @@
|
||||
import "datetime"
|
||||
import "iter"
|
||||
import "math"
|
||||
|
||||
$now = datetime.now()
|
||||
|
||||
# alternate every four seconds
|
||||
$mod0 = math.mod($now, 8) == 0
|
||||
$mod1 = math.mod($now, 8) == 1
|
||||
$mod2 = math.mod($now, 8) == 2
|
||||
$mod3 = math.mod($now, 8) == 3
|
||||
$moda = $mod0 || $mod1 || $mod2 || $mod3
|
||||
|
||||
$mod4 = math.mod($now, 8) == 4
|
||||
$mod5 = math.mod($now, 8) == 5
|
||||
$mod6 = math.mod($now, 8) == 6
|
||||
$mod7 = math.mod($now, 8) == 7
|
||||
$modb = $mod4 || $mod5 || $mod6 || $mod7
|
||||
|
||||
$fn = if $moda {
|
||||
func($x) { # notable because concrete type is fn(t1) t2, where t1 != t2
|
||||
len($x)
|
||||
}
|
||||
} else {
|
||||
func($x) { # notable because concrete type is fn(t1) t2, where t1 != t2
|
||||
-1*len($x)
|
||||
}
|
||||
}
|
||||
|
||||
$in1 = if $modb {
|
||||
["a", "bb", "ccc", "dddd", "eeeee",]
|
||||
} else {
|
||||
["ffffff", "ggggggg", "hhhhhhhh", "iiiiiiiii", "jjjjjjjjjj",]
|
||||
}
|
||||
|
||||
$out1 = iter.map($in1, $fn)
|
||||
|
||||
$t1 = template("out1: {{ . }}", $out1)
|
||||
|
||||
test $t1 {}
|
||||
|
||||
file "/tmp/mgmt/map" {
|
||||
state => $const.res.file.state.exists,
|
||||
content => $t1,
|
||||
}
|
||||
|
||||
file "/tmp/mgmt/" {
|
||||
state => $const.res.file.state.exists,
|
||||
}
|
||||
@@ -22,8 +22,10 @@ import (
|
||||
"fmt"
|
||||
|
||||
"github.com/purpleidea/mgmt/lang/funcs"
|
||||
"github.com/purpleidea/mgmt/lang/funcs/structs"
|
||||
"github.com/purpleidea/mgmt/lang/interfaces"
|
||||
"github.com/purpleidea/mgmt/lang/types"
|
||||
"github.com/purpleidea/mgmt/lang/types/full"
|
||||
"github.com/purpleidea/mgmt/util"
|
||||
"github.com/purpleidea/mgmt/util/errwrap"
|
||||
)
|
||||
@@ -31,16 +33,17 @@ import (
|
||||
const (
|
||||
// MapFuncName is the name this function is registered as.
|
||||
MapFuncName = "map"
|
||||
|
||||
// arg names...
|
||||
mapArgNameInputs = "inputs"
|
||||
mapArgNameFunction = "function"
|
||||
)
|
||||
|
||||
func init() {
|
||||
funcs.ModuleRegister(ModuleName, MapFuncName, func() interfaces.Func { return &MapFunc{} }) // must register the func and name
|
||||
}
|
||||
|
||||
const (
|
||||
argNameInputs = "inputs"
|
||||
argNameFunction = "function"
|
||||
)
|
||||
var _ interfaces.PolyFunc = &MapFunc{} // ensure it meets this expectation
|
||||
|
||||
// MapFunc is the standard map iterator function that applies a function to each
|
||||
// element in a list. It returns a list with the same number of elements as the
|
||||
@@ -59,10 +62,16 @@ type MapFunc struct {
|
||||
init *interfaces.Init
|
||||
last types.Value // last value received to use for diff
|
||||
|
||||
inputs types.Value
|
||||
function func([]types.Value) (types.Value, error)
|
||||
lastFuncValue *full.FuncValue // remember the last function value
|
||||
lastInputListLength int // remember the last input list length
|
||||
|
||||
result types.Value // last calculated output
|
||||
inputListType *types.Type
|
||||
outputListType *types.Type
|
||||
|
||||
// outputChan is an initially-nil channel from which we receive output
|
||||
// lists from the subgraph. This channel is reset when the subgraph is
|
||||
// recreated.
|
||||
outputChan chan types.Value
|
||||
}
|
||||
|
||||
// String returns a simple name for this function. This is needed so this struct
|
||||
@@ -73,7 +82,7 @@ func (obj *MapFunc) String() string {
|
||||
|
||||
// ArgGen returns the Nth arg name for this function.
|
||||
func (obj *MapFunc) ArgGen(index int) (string, error) {
|
||||
seq := []string{argNameInputs, argNameFunction} // inverted for pretty!
|
||||
seq := []string{mapArgNameInputs, mapArgNameFunction} // inverted for pretty!
|
||||
if l := len(seq); index >= l {
|
||||
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
|
||||
}
|
||||
@@ -439,7 +448,7 @@ func (obj *MapFunc) Polymorphisms(partialType *types.Type, partialValues []types
|
||||
tI := types.NewType(fmt.Sprintf("[]%s", t1.String())) // in
|
||||
tO := types.NewType(fmt.Sprintf("[]%s", t2.String())) // out
|
||||
tF := types.NewType(fmt.Sprintf("func(%s) %s", t1.String(), t2.String()))
|
||||
s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameInputs, tI, argNameFunction, tF, tO)
|
||||
s := fmt.Sprintf("func(%s %s, %s %s) %s", mapArgNameInputs, tI, mapArgNameFunction, tF, tO)
|
||||
typ := types.NewType(s) // yay!
|
||||
|
||||
// TODO: type check that the partialValues are compatible
|
||||
@@ -552,80 +561,251 @@ func (obj *MapFunc) sig() *types.Type {
|
||||
tO := types.NewType(fmt.Sprintf("[]%s", tOi.String())) // return type
|
||||
|
||||
// type of 1st arg (the function)
|
||||
tF := types.NewType(fmt.Sprintf("func(%s) %s", tIi.String(), tOi.String()))
|
||||
tF := types.NewType(fmt.Sprintf("func(%s %s) %s", "name-which-can-vary-over-time", tIi.String(), tOi.String()))
|
||||
|
||||
s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameInputs, tI, argNameFunction, tF, tO)
|
||||
s := fmt.Sprintf("func(%s %s, %s %s) %s", mapArgNameInputs, tI, mapArgNameFunction, tF, tO)
|
||||
return types.NewType(s) // yay!
|
||||
}
|
||||
|
||||
// Init runs some startup code for this function.
|
||||
func (obj *MapFunc) Init(init *interfaces.Init) error {
|
||||
obj.init = init
|
||||
obj.lastFuncValue = nil
|
||||
obj.lastInputListLength = -1
|
||||
|
||||
obj.inputListType = types.NewType(fmt.Sprintf("[]%s", obj.Type))
|
||||
obj.outputListType = types.NewType(fmt.Sprintf("[]%s", obj.RType))
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// Stream returns the changing values that this func has over time.
|
||||
func (obj *MapFunc) Stream(ctx context.Context) error {
|
||||
// Every time the FuncValue or the length of the list changes, recreate the
|
||||
// subgraph, by calling the FuncValue N times on N nodes, each of which
|
||||
// extracts one of the N values in the list.
|
||||
|
||||
defer close(obj.init.Output) // the sender closes
|
||||
rtyp := types.NewType(fmt.Sprintf("[]%s", obj.RType.String()))
|
||||
|
||||
// A Func to send input lists to the subgraph. The Txn.Erase() call ensures
|
||||
// that this Func is not removed when the subgraph is recreated, so that the
|
||||
// function graph can propagate the last list we received to the subgraph.
|
||||
inputChan := make(chan types.Value)
|
||||
subgraphInput := &structs.ChannelBasedSourceFunc{
|
||||
Name: "subgraphInput",
|
||||
Source: obj,
|
||||
Chan: inputChan,
|
||||
Type: obj.inputListType,
|
||||
}
|
||||
obj.init.Txn.AddVertex(subgraphInput)
|
||||
if err := obj.init.Txn.Commit(); err != nil {
|
||||
return errwrap.Wrapf(err, "commit error in Stream")
|
||||
}
|
||||
obj.init.Txn.Erase() // prevent the next Reverse() from removing subgraphInput
|
||||
defer func() {
|
||||
close(inputChan)
|
||||
obj.init.Txn.Reverse()
|
||||
obj.init.Txn.DeleteVertex(subgraphInput)
|
||||
obj.init.Txn.Commit()
|
||||
}()
|
||||
|
||||
obj.outputChan = nil
|
||||
|
||||
canReceiveMoreFuncValuesOrInputLists := true
|
||||
canReceiveMoreOutputLists := true
|
||||
for {
|
||||
|
||||
if !canReceiveMoreFuncValuesOrInputLists && !canReceiveMoreOutputLists {
|
||||
//break
|
||||
return nil
|
||||
}
|
||||
|
||||
select {
|
||||
case input, ok := <-obj.init.Input:
|
||||
if !ok {
|
||||
obj.init.Input = nil // don't infinite loop back
|
||||
continue // no more inputs, but don't return!
|
||||
obj.init.Input = nil // block looping back here
|
||||
canReceiveMoreFuncValuesOrInputLists = false
|
||||
continue
|
||||
}
|
||||
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
|
||||
// return errwrap.Wrapf(err, "wrong function input")
|
||||
//}
|
||||
|
||||
if obj.last != nil && input.Cmp(obj.last) == nil {
|
||||
continue // value didn't change, skip it
|
||||
}
|
||||
obj.last = input // store for next
|
||||
|
||||
function := input.Struct()[argNameFunction].Func() // func([]Value) (Value, error)
|
||||
//if function == obj.function { // TODO: how can we cmp?
|
||||
// continue // nothing changed
|
||||
//}
|
||||
obj.function = function
|
||||
|
||||
inputs := input.Struct()[argNameInputs]
|
||||
if obj.inputs != nil && obj.inputs.Cmp(inputs) == nil {
|
||||
continue // nothing changed
|
||||
value, exists := input.Struct()[mapArgNameFunction]
|
||||
if !exists {
|
||||
return fmt.Errorf("programming error, can't find edge")
|
||||
}
|
||||
obj.inputs = inputs
|
||||
|
||||
// run the function on each index
|
||||
output := []types.Value{}
|
||||
for ix, v := range inputs.List() { // []Value
|
||||
args := []types.Value{v} // only one input arg!
|
||||
x, err := function(args)
|
||||
if err != nil {
|
||||
return errwrap.Wrapf(err, "error running map function on index %d", ix)
|
||||
newFuncValue, ok := value.(*full.FuncValue)
|
||||
if !ok {
|
||||
return fmt.Errorf("programming error, can't convert to *FuncValue")
|
||||
}
|
||||
|
||||
newInputList, exists := input.Struct()[mapArgNameInputs]
|
||||
if !exists {
|
||||
return fmt.Errorf("programming error, can't find edge")
|
||||
}
|
||||
|
||||
// If we have a new function or the length of the input
|
||||
// list has changed, then we need to replace the
|
||||
// subgraph with a new one that uses the new function
|
||||
// the correct number of times.
|
||||
|
||||
// It's important to have this compare step to avoid
|
||||
// redundant graph replacements which slow things down,
|
||||
// but also cause the engine to lock, which can preempt
|
||||
// the process scheduler, which can cause duplicate or
|
||||
// unnecessary re-sending of values here, which causes
|
||||
// the whole process to repeat ad-nauseum.
|
||||
n := len(newInputList.List())
|
||||
if newFuncValue != obj.lastFuncValue || n != obj.lastInputListLength {
|
||||
obj.lastFuncValue = newFuncValue
|
||||
obj.lastInputListLength = n
|
||||
// replaceSubGraph uses the above two values
|
||||
if err := obj.replaceSubGraph(subgraphInput); err != nil {
|
||||
return errwrap.Wrapf(err, "could not replace subgraph")
|
||||
}
|
||||
|
||||
output = append(output, x)
|
||||
}
|
||||
result := &types.ListValue{
|
||||
V: output,
|
||||
T: rtyp,
|
||||
canReceiveMoreOutputLists = true
|
||||
}
|
||||
|
||||
if obj.result != nil && obj.result.Cmp(result) == nil {
|
||||
continue // result didn't change
|
||||
// send the new input list to the subgraph
|
||||
select {
|
||||
case inputChan <- newInputList:
|
||||
case <-ctx.Done():
|
||||
return nil
|
||||
}
|
||||
obj.result = result // store new result
|
||||
|
||||
case <-ctx.Done():
|
||||
return nil
|
||||
}
|
||||
case outputList, ok := <-obj.outputChan:
|
||||
// send the new output list downstream
|
||||
if !ok {
|
||||
obj.outputChan = nil
|
||||
canReceiveMoreOutputLists = false
|
||||
continue
|
||||
}
|
||||
|
||||
select {
|
||||
case obj.init.Output <- outputList:
|
||||
case <-ctx.Done():
|
||||
return nil
|
||||
}
|
||||
|
||||
select {
|
||||
case obj.init.Output <- obj.result: // send
|
||||
// pass
|
||||
case <-ctx.Done():
|
||||
return nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (obj *MapFunc) replaceSubGraph(subgraphInput interfaces.Func) error {
|
||||
// Create a subgraph which splits the input list into 'n' nodes, applies
|
||||
// 'newFuncValue' to each, then combines the 'n' outputs back into a list.
|
||||
//
|
||||
// Here is what the subgraph looks like:
|
||||
//
|
||||
// digraph {
|
||||
// "subgraphInput" -> "inputElemFunc0"
|
||||
// "subgraphInput" -> "inputElemFunc1"
|
||||
// "subgraphInput" -> "inputElemFunc2"
|
||||
//
|
||||
// "inputElemFunc0" -> "outputElemFunc0"
|
||||
// "inputElemFunc1" -> "outputElemFunc1"
|
||||
// "inputElemFunc2" -> "outputElemFunc2"
|
||||
//
|
||||
// "outputElemFunc0" -> "outputListFunc"
|
||||
// "outputElemFunc1" -> "outputListFunc"
|
||||
// "outputElemFunc1" -> "outputListFunc"
|
||||
//
|
||||
// "outputListFunc" -> "subgraphOutput"
|
||||
// }
|
||||
|
||||
const channelBasedSinkFuncArgNameEdgeName = structs.ChannelBasedSinkFuncArgName // XXX: not sure if the specific name matters.
|
||||
|
||||
// delete the old subgraph
|
||||
if err := obj.init.Txn.Reverse(); err != nil {
|
||||
return errwrap.Wrapf(err, "could not Reverse")
|
||||
}
|
||||
|
||||
// create the new subgraph
|
||||
|
||||
obj.outputChan = make(chan types.Value)
|
||||
subgraphOutput := &structs.ChannelBasedSinkFunc{
|
||||
Name: "subgraphOutput",
|
||||
Target: obj,
|
||||
EdgeName: channelBasedSinkFuncArgNameEdgeName,
|
||||
Chan: obj.outputChan,
|
||||
Type: obj.outputListType,
|
||||
}
|
||||
obj.init.Txn.AddVertex(subgraphOutput)
|
||||
|
||||
m := make(map[string]*types.Type)
|
||||
ord := []string{}
|
||||
for i := 0; i < obj.lastInputListLength; i++ {
|
||||
argName := fmt.Sprintf("outputElem%d", i)
|
||||
m[argName] = obj.RType
|
||||
ord = append(ord, argName)
|
||||
}
|
||||
typ := &types.Type{
|
||||
Kind: types.KindFunc,
|
||||
Map: m,
|
||||
Ord: ord,
|
||||
Out: obj.outputListType,
|
||||
}
|
||||
outputListFunc := structs.SimpleFnToDirectFunc(
|
||||
"mapOutputList",
|
||||
&types.FuncValue{
|
||||
V: func(args []types.Value) (types.Value, error) {
|
||||
listValue := &types.ListValue{
|
||||
V: args,
|
||||
T: obj.outputListType,
|
||||
}
|
||||
|
||||
return listValue, nil
|
||||
},
|
||||
T: typ,
|
||||
},
|
||||
)
|
||||
|
||||
obj.init.Txn.AddVertex(outputListFunc)
|
||||
obj.init.Txn.AddEdge(outputListFunc, subgraphOutput, &interfaces.FuncEdge{
|
||||
Args: []string{channelBasedSinkFuncArgNameEdgeName},
|
||||
})
|
||||
|
||||
for i := 0; i < obj.lastInputListLength; i++ {
|
||||
i := i
|
||||
inputElemFunc := structs.SimpleFnToDirectFunc(
|
||||
fmt.Sprintf("mapInputElem[%d]", i),
|
||||
&types.FuncValue{
|
||||
V: func(args []types.Value) (types.Value, error) {
|
||||
if len(args) != 1 {
|
||||
return nil, fmt.Errorf("inputElemFunc: expected a single argument")
|
||||
}
|
||||
arg := args[0]
|
||||
|
||||
list, ok := arg.(*types.ListValue)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("inputElemFunc: expected a ListValue argument")
|
||||
}
|
||||
|
||||
return list.List()[i], nil
|
||||
},
|
||||
T: types.NewType(fmt.Sprintf("func(inputList %s) %s", obj.inputListType, obj.Type)),
|
||||
},
|
||||
)
|
||||
obj.init.Txn.AddVertex(inputElemFunc)
|
||||
|
||||
outputElemFunc, err := obj.lastFuncValue.Call(obj.init.Txn, []interfaces.Func{inputElemFunc})
|
||||
if err != nil {
|
||||
return errwrap.Wrapf(err, "could not call obj.lastFuncValue.Call()")
|
||||
}
|
||||
|
||||
obj.init.Txn.AddEdge(subgraphInput, inputElemFunc, &interfaces.FuncEdge{
|
||||
Args: []string{"inputList"},
|
||||
})
|
||||
obj.init.Txn.AddEdge(outputElemFunc, outputListFunc, &interfaces.FuncEdge{
|
||||
Args: []string{fmt.Sprintf("outputElem%d", i)},
|
||||
})
|
||||
}
|
||||
|
||||
return obj.init.Txn.Commit()
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user