lang: funcs: core: iter: Finish map function

This was the goal all along. Proper iteration without for loops.

Yay!

Co-authored-by: Samuel Gélineau <gelisam@gmail.com>
This commit is contained in:
James Shubin
2023-09-25 18:22:22 -04:00
parent 6e1cde815c
commit 2bc23c468e
4 changed files with 319 additions and 49 deletions

View File

@@ -0,0 +1,13 @@
import "iter"
$fn = func($x) { # notable because concrete type is fn(t1) t2, where t1 != t2
len($x)
}
$in1 = ["a", "bb", "ccc", "dddd", "eeeee",]
$out1 = iter.map($in1, $fn)
$t1 = template("out1: {{ . }}", $out1)
test $t1 {}

View File

@@ -0,0 +1,28 @@
import "datetime"
import "iter"
import "math"
$now = datetime.now()
# alternate every four seconds
$mod0 = math.mod($now, 8) == 0
$mod1 = math.mod($now, 8) == 1
$mod2 = math.mod($now, 8) == 2
$mod3 = math.mod($now, 8) == 3
$mod = $mod0 || $mod1 || $mod2 || $mod3
$fn = func($x) { # notable because concrete type is fn(t1) t2, where t1 != t2
len($x)
}
$in1 = if $mod {
["a", "bb", "ccc", "dddd", "eeeee",]
} else {
["ffffff", "ggggggg", "hhhhhhhh", "iiiiiiiii", "jjjjjjjjjj",]
}
$out1 = iter.map($in1, $fn)
$t1 = template("out1: {{ . }}", $out1)
test $t1 {}

View File

@@ -0,0 +1,49 @@
import "datetime"
import "iter"
import "math"
$now = datetime.now()
# alternate every four seconds
$mod0 = math.mod($now, 8) == 0
$mod1 = math.mod($now, 8) == 1
$mod2 = math.mod($now, 8) == 2
$mod3 = math.mod($now, 8) == 3
$moda = $mod0 || $mod1 || $mod2 || $mod3
$mod4 = math.mod($now, 8) == 4
$mod5 = math.mod($now, 8) == 5
$mod6 = math.mod($now, 8) == 6
$mod7 = math.mod($now, 8) == 7
$modb = $mod4 || $mod5 || $mod6 || $mod7
$fn = if $moda {
func($x) { # notable because concrete type is fn(t1) t2, where t1 != t2
len($x)
}
} else {
func($x) { # notable because concrete type is fn(t1) t2, where t1 != t2
-1*len($x)
}
}
$in1 = if $modb {
["a", "bb", "ccc", "dddd", "eeeee",]
} else {
["ffffff", "ggggggg", "hhhhhhhh", "iiiiiiiii", "jjjjjjjjjj",]
}
$out1 = iter.map($in1, $fn)
$t1 = template("out1: {{ . }}", $out1)
test $t1 {}
file "/tmp/mgmt/map" {
state => $const.res.file.state.exists,
content => $t1,
}
file "/tmp/mgmt/" {
state => $const.res.file.state.exists,
}

View File

@@ -22,8 +22,10 @@ import (
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/funcs/structs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/lang/types/full"
"github.com/purpleidea/mgmt/util"
"github.com/purpleidea/mgmt/util/errwrap"
)
@@ -31,16 +33,17 @@ import (
const (
// MapFuncName is the name this function is registered as.
MapFuncName = "map"
// arg names...
mapArgNameInputs = "inputs"
mapArgNameFunction = "function"
)
func init() {
funcs.ModuleRegister(ModuleName, MapFuncName, func() interfaces.Func { return &MapFunc{} }) // must register the func and name
}
const (
argNameInputs = "inputs"
argNameFunction = "function"
)
var _ interfaces.PolyFunc = &MapFunc{} // ensure it meets this expectation
// MapFunc is the standard map iterator function that applies a function to each
// element in a list. It returns a list with the same number of elements as the
@@ -59,10 +62,16 @@ type MapFunc struct {
init *interfaces.Init
last types.Value // last value received to use for diff
inputs types.Value
function func([]types.Value) (types.Value, error)
lastFuncValue *full.FuncValue // remember the last function value
lastInputListLength int // remember the last input list length
result types.Value // last calculated output
inputListType *types.Type
outputListType *types.Type
// outputChan is an initially-nil channel from which we receive output
// lists from the subgraph. This channel is reset when the subgraph is
// recreated.
outputChan chan types.Value
}
// String returns a simple name for this function. This is needed so this struct
@@ -73,7 +82,7 @@ func (obj *MapFunc) String() string {
// ArgGen returns the Nth arg name for this function.
func (obj *MapFunc) ArgGen(index int) (string, error) {
seq := []string{argNameInputs, argNameFunction} // inverted for pretty!
seq := []string{mapArgNameInputs, mapArgNameFunction} // inverted for pretty!
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
@@ -439,7 +448,7 @@ func (obj *MapFunc) Polymorphisms(partialType *types.Type, partialValues []types
tI := types.NewType(fmt.Sprintf("[]%s", t1.String())) // in
tO := types.NewType(fmt.Sprintf("[]%s", t2.String())) // out
tF := types.NewType(fmt.Sprintf("func(%s) %s", t1.String(), t2.String()))
s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameInputs, tI, argNameFunction, tF, tO)
s := fmt.Sprintf("func(%s %s, %s %s) %s", mapArgNameInputs, tI, mapArgNameFunction, tF, tO)
typ := types.NewType(s) // yay!
// TODO: type check that the partialValues are compatible
@@ -552,80 +561,251 @@ func (obj *MapFunc) sig() *types.Type {
tO := types.NewType(fmt.Sprintf("[]%s", tOi.String())) // return type
// type of 1st arg (the function)
tF := types.NewType(fmt.Sprintf("func(%s) %s", tIi.String(), tOi.String()))
tF := types.NewType(fmt.Sprintf("func(%s %s) %s", "name-which-can-vary-over-time", tIi.String(), tOi.String()))
s := fmt.Sprintf("func(%s %s, %s %s) %s", argNameInputs, tI, argNameFunction, tF, tO)
s := fmt.Sprintf("func(%s %s, %s %s) %s", mapArgNameInputs, tI, mapArgNameFunction, tF, tO)
return types.NewType(s) // yay!
}
// Init runs some startup code for this function.
func (obj *MapFunc) Init(init *interfaces.Init) error {
obj.init = init
obj.lastFuncValue = nil
obj.lastInputListLength = -1
obj.inputListType = types.NewType(fmt.Sprintf("[]%s", obj.Type))
obj.outputListType = types.NewType(fmt.Sprintf("[]%s", obj.RType))
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *MapFunc) Stream(ctx context.Context) error {
// Every time the FuncValue or the length of the list changes, recreate the
// subgraph, by calling the FuncValue N times on N nodes, each of which
// extracts one of the N values in the list.
defer close(obj.init.Output) // the sender closes
rtyp := types.NewType(fmt.Sprintf("[]%s", obj.RType.String()))
// A Func to send input lists to the subgraph. The Txn.Erase() call ensures
// that this Func is not removed when the subgraph is recreated, so that the
// function graph can propagate the last list we received to the subgraph.
inputChan := make(chan types.Value)
subgraphInput := &structs.ChannelBasedSourceFunc{
Name: "subgraphInput",
Source: obj,
Chan: inputChan,
Type: obj.inputListType,
}
obj.init.Txn.AddVertex(subgraphInput)
if err := obj.init.Txn.Commit(); err != nil {
return errwrap.Wrapf(err, "commit error in Stream")
}
obj.init.Txn.Erase() // prevent the next Reverse() from removing subgraphInput
defer func() {
close(inputChan)
obj.init.Txn.Reverse()
obj.init.Txn.DeleteVertex(subgraphInput)
obj.init.Txn.Commit()
}()
obj.outputChan = nil
canReceiveMoreFuncValuesOrInputLists := true
canReceiveMoreOutputLists := true
for {
if !canReceiveMoreFuncValuesOrInputLists && !canReceiveMoreOutputLists {
//break
return nil
}
select {
case input, ok := <-obj.init.Input:
if !ok {
obj.init.Input = nil // don't infinite loop back
continue // no more inputs, but don't return!
obj.init.Input = nil // block looping back here
canReceiveMoreFuncValuesOrInputLists = false
continue
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
function := input.Struct()[argNameFunction].Func() // func([]Value) (Value, error)
//if function == obj.function { // TODO: how can we cmp?
// continue // nothing changed
//}
obj.function = function
inputs := input.Struct()[argNameInputs]
if obj.inputs != nil && obj.inputs.Cmp(inputs) == nil {
continue // nothing changed
value, exists := input.Struct()[mapArgNameFunction]
if !exists {
return fmt.Errorf("programming error, can't find edge")
}
obj.inputs = inputs
// run the function on each index
output := []types.Value{}
for ix, v := range inputs.List() { // []Value
args := []types.Value{v} // only one input arg!
x, err := function(args)
if err != nil {
return errwrap.Wrapf(err, "error running map function on index %d", ix)
newFuncValue, ok := value.(*full.FuncValue)
if !ok {
return fmt.Errorf("programming error, can't convert to *FuncValue")
}
newInputList, exists := input.Struct()[mapArgNameInputs]
if !exists {
return fmt.Errorf("programming error, can't find edge")
}
// If we have a new function or the length of the input
// list has changed, then we need to replace the
// subgraph with a new one that uses the new function
// the correct number of times.
// It's important to have this compare step to avoid
// redundant graph replacements which slow things down,
// but also cause the engine to lock, which can preempt
// the process scheduler, which can cause duplicate or
// unnecessary re-sending of values here, which causes
// the whole process to repeat ad-nauseum.
n := len(newInputList.List())
if newFuncValue != obj.lastFuncValue || n != obj.lastInputListLength {
obj.lastFuncValue = newFuncValue
obj.lastInputListLength = n
// replaceSubGraph uses the above two values
if err := obj.replaceSubGraph(subgraphInput); err != nil {
return errwrap.Wrapf(err, "could not replace subgraph")
}
output = append(output, x)
}
result := &types.ListValue{
V: output,
T: rtyp,
canReceiveMoreOutputLists = true
}
if obj.result != nil && obj.result.Cmp(result) == nil {
continue // result didn't change
// send the new input list to the subgraph
select {
case inputChan <- newInputList:
case <-ctx.Done():
return nil
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
case outputList, ok := <-obj.outputChan:
// send the new output list downstream
if !ok {
obj.outputChan = nil
canReceiveMoreOutputLists = false
continue
}
select {
case obj.init.Output <- outputList:
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
// pass
case <-ctx.Done():
return nil
}
}
}
func (obj *MapFunc) replaceSubGraph(subgraphInput interfaces.Func) error {
// Create a subgraph which splits the input list into 'n' nodes, applies
// 'newFuncValue' to each, then combines the 'n' outputs back into a list.
//
// Here is what the subgraph looks like:
//
// digraph {
// "subgraphInput" -> "inputElemFunc0"
// "subgraphInput" -> "inputElemFunc1"
// "subgraphInput" -> "inputElemFunc2"
//
// "inputElemFunc0" -> "outputElemFunc0"
// "inputElemFunc1" -> "outputElemFunc1"
// "inputElemFunc2" -> "outputElemFunc2"
//
// "outputElemFunc0" -> "outputListFunc"
// "outputElemFunc1" -> "outputListFunc"
// "outputElemFunc1" -> "outputListFunc"
//
// "outputListFunc" -> "subgraphOutput"
// }
const channelBasedSinkFuncArgNameEdgeName = structs.ChannelBasedSinkFuncArgName // XXX: not sure if the specific name matters.
// delete the old subgraph
if err := obj.init.Txn.Reverse(); err != nil {
return errwrap.Wrapf(err, "could not Reverse")
}
// create the new subgraph
obj.outputChan = make(chan types.Value)
subgraphOutput := &structs.ChannelBasedSinkFunc{
Name: "subgraphOutput",
Target: obj,
EdgeName: channelBasedSinkFuncArgNameEdgeName,
Chan: obj.outputChan,
Type: obj.outputListType,
}
obj.init.Txn.AddVertex(subgraphOutput)
m := make(map[string]*types.Type)
ord := []string{}
for i := 0; i < obj.lastInputListLength; i++ {
argName := fmt.Sprintf("outputElem%d", i)
m[argName] = obj.RType
ord = append(ord, argName)
}
typ := &types.Type{
Kind: types.KindFunc,
Map: m,
Ord: ord,
Out: obj.outputListType,
}
outputListFunc := structs.SimpleFnToDirectFunc(
"mapOutputList",
&types.FuncValue{
V: func(args []types.Value) (types.Value, error) {
listValue := &types.ListValue{
V: args,
T: obj.outputListType,
}
return listValue, nil
},
T: typ,
},
)
obj.init.Txn.AddVertex(outputListFunc)
obj.init.Txn.AddEdge(outputListFunc, subgraphOutput, &interfaces.FuncEdge{
Args: []string{channelBasedSinkFuncArgNameEdgeName},
})
for i := 0; i < obj.lastInputListLength; i++ {
i := i
inputElemFunc := structs.SimpleFnToDirectFunc(
fmt.Sprintf("mapInputElem[%d]", i),
&types.FuncValue{
V: func(args []types.Value) (types.Value, error) {
if len(args) != 1 {
return nil, fmt.Errorf("inputElemFunc: expected a single argument")
}
arg := args[0]
list, ok := arg.(*types.ListValue)
if !ok {
return nil, fmt.Errorf("inputElemFunc: expected a ListValue argument")
}
return list.List()[i], nil
},
T: types.NewType(fmt.Sprintf("func(inputList %s) %s", obj.inputListType, obj.Type)),
},
)
obj.init.Txn.AddVertex(inputElemFunc)
outputElemFunc, err := obj.lastFuncValue.Call(obj.init.Txn, []interfaces.Func{inputElemFunc})
if err != nil {
return errwrap.Wrapf(err, "could not call obj.lastFuncValue.Call()")
}
obj.init.Txn.AddEdge(subgraphInput, inputElemFunc, &interfaces.FuncEdge{
Args: []string{"inputList"},
})
obj.init.Txn.AddEdge(outputElemFunc, outputListFunc, &interfaces.FuncEdge{
Args: []string{fmt.Sprintf("outputElem%d", i)},
})
}
return obj.init.Txn.Commit()
}