lang: Split lang package out into many subpackages

This is a giant refactor to split the giant lang package into many
subpackages. The most difficult piece was figuring out how to extract
the extra ast structs into their own package, because they needed to
call two functions which also needed to import the ast.

The solution was to separate out those functions into their own
packages, and to pass them into the ast at the root when they're needed,
and to let the relevant ast portions call a handle.

This isn't terribly ugly because we already had a giant data struct
woven through the ast.

The bad part is rebasing any WIP work on top of this.
This commit is contained in:
James Shubin
2021-10-21 03:35:31 -04:00
parent 8ae47bd490
commit 23b5a4729f
23 changed files with 1212 additions and 1129 deletions

View File

@@ -0,0 +1,361 @@
// Mgmt
// Copyright (C) 2013-2021+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package interpolate
import (
"fmt"
"github.com/purpleidea/mgmt/lang/ast"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/util/errwrap"
"github.com/hashicorp/hil"
hilast "github.com/hashicorp/hil/ast"
)
const (
// UseHilInterpolation specifies that we use the legacy Hil interpolate.
// This can't properly escape a $ in the standard way. It's here in case
// someone wants to play with it and examine how the AST stuff worked...
UseHilInterpolation = false
)
// InterpolateStr interpolates a string and returns the representative AST.
func InterpolateStr(str string, pos *interfaces.Pos, data *interfaces.Data) (interfaces.Expr, error) {
if data.Debug {
data.Logf("interpolating: %s", str)
}
if UseHilInterpolation {
return InterpolateHil(str, pos, data)
}
return InterpolateRagel(str, pos, data)
}
// InterpolateRagel interpolates a string and returns the representative AST. It
// uses the ragel parser to perform the string interpolation.
func InterpolateRagel(str string, pos *interfaces.Pos, data *interfaces.Data) (interfaces.Expr, error) {
sequence, err := Parse(str)
if err != nil {
return nil, errwrap.Wrapf(err, "parser failed")
}
exprs := []interfaces.Expr{}
for _, term := range sequence {
switch t := term.(type) {
case Literal:
expr := &ast.ExprStr{
V: t.Value,
}
exprs = append(exprs, expr)
case Variable:
expr := &ast.ExprVar{
Name: t.Name,
}
exprs = append(exprs, expr)
default:
return nil, fmt.Errorf("unknown term (%T): %+v", t, t)
}
}
// If we didn't find anything of value, we got an empty string...
if len(sequence) == 0 && str == "" { // be doubly sure...
expr := &ast.ExprStr{
V: "",
}
exprs = append(exprs, expr)
}
// The parser produces non-optimal results where two strings are next to
// each other, when they could be statically combined together.
simplified, err := simplifyExprList(exprs)
if err != nil {
return nil, errwrap.Wrapf(err, "expr list simplify failed")
}
result, err := concatExprListIntoCall(simplified)
if err != nil {
return nil, errwrap.Wrapf(err, "concat expr list failed")
}
return result, errwrap.Wrapf(result.Init(data), "init failed")
}
// InterpolateHil interpolates a string and returns the representative AST. This
// particular implementation uses the hashicorp hil library and syntax to do so.
func InterpolateHil(str string, pos *interfaces.Pos, data *interfaces.Data) (interfaces.Expr, error) {
var line, column int = -1, -1
var filename string
if pos != nil {
line = pos.Line
column = pos.Column
filename = pos.Filename
}
hilPos := hilast.Pos{
Line: line,
Column: column,
Filename: filename,
}
// should not error on plain strings
tree, err := hil.ParseWithPosition(str, hilPos)
if err != nil {
return nil, errwrap.Wrapf(err, "can't parse string interpolation: `%s`", str)
}
if data.Debug {
data.Logf("tree: %+v", tree)
}
transformData := &interfaces.Data{
// TODO: add missing fields here if/when needed
Fs: data.Fs,
FsURI: data.FsURI,
Base: data.Base,
Files: data.Files,
Imports: data.Imports,
Metadata: data.Metadata,
Modules: data.Modules,
LexParser: data.LexParser,
Downloader: data.Downloader,
StrInterpolater: data.StrInterpolater,
//World: data.World, // TODO: do we need this?
Prefix: data.Prefix,
Debug: data.Debug,
Logf: func(format string, v ...interface{}) {
data.Logf("transform: "+format, v...)
},
}
result, err := hilTransform(tree, transformData)
if err != nil {
return nil, errwrap.Wrapf(err, "error running AST map: `%s`", str)
}
if data.Debug {
data.Logf("transform: %+v", result)
}
// make sure to run the Init on the new expression
return result, errwrap.Wrapf(result.Init(data), "init failed")
}
// hilTransform returns the AST equivalent of the hil AST.
func hilTransform(root hilast.Node, data *interfaces.Data) (interfaces.Expr, error) {
switch node := root.(type) {
case *hilast.Output: // common root node
if data.Debug {
data.Logf("got output type: %+v", node)
}
if len(node.Exprs) == 0 {
return nil, fmt.Errorf("no expressions found")
}
if len(node.Exprs) == 1 {
return hilTransform(node.Exprs[0], data)
}
// assumes len > 1
args := []interfaces.Expr{}
for _, n := range node.Exprs {
expr, err := hilTransform(n, data)
if err != nil {
return nil, errwrap.Wrapf(err, "root failed")
}
args = append(args, expr)
}
// XXX: i think we should be adding these args together, instead
// of grouping for example...
result, err := concatExprListIntoCall(args)
if err != nil {
return nil, errwrap.Wrapf(err, "function grouping failed")
}
return result, nil
case *hilast.Call:
if data.Debug {
data.Logf("got function type: %+v", node)
}
args := []interfaces.Expr{}
for _, n := range node.Args {
arg, err := hilTransform(n, data)
if err != nil {
return nil, fmt.Errorf("call failed: %+v", err)
}
args = append(args, arg)
}
return &ast.ExprCall{
Name: node.Func, // name
Args: args,
}, nil
case *hilast.LiteralNode: // string, int, etc...
if data.Debug {
data.Logf("got literal type: %+v", node)
}
switch node.Typex {
case hilast.TypeBool:
return &ast.ExprBool{
V: node.Value.(bool),
}, nil
case hilast.TypeString:
return &ast.ExprStr{
V: node.Value.(string),
}, nil
case hilast.TypeInt:
return &ast.ExprInt{
// node.Value is an int stored as an interface
V: int64(node.Value.(int)),
}, nil
case hilast.TypeFloat:
return &ast.ExprFloat{
V: node.Value.(float64),
}, nil
// TODO: should we handle these too?
//case hilast.TypeList:
//case hilast.TypeMap:
default:
return nil, fmt.Errorf("unmatched type: %T", node)
}
case *hilast.VariableAccess: // variable lookup
if data.Debug {
data.Logf("got variable access type: %+v", node)
}
return &ast.ExprVar{
Name: node.Name,
}, nil
//case *hilast.Index:
// if va, ok := node.Target.(*hilast.VariableAccess); ok {
// v, err := NewInterpolatedVariable(va.Name)
// if err != nil {
// resultErr = err
// return n
// }
// result = append(result, v)
// }
// if va, ok := node.Key.(*hilast.VariableAccess); ok {
// v, err := NewInterpolatedVariable(va.Name)
// if err != nil {
// resultErr = err
// return n
// }
// result = append(result, v)
// }
default:
return nil, fmt.Errorf("unmatched type: %+v", node)
}
}
// concatExprListIntoCall takes a list of expressions, and combines them into an
// expression which ultimately concatenates them all together with a + operator.
// TODO: this assumes they're all strings, do we need to watch out for int's?
func concatExprListIntoCall(exprs []interfaces.Expr) (interfaces.Expr, error) {
if len(exprs) == 0 {
return nil, fmt.Errorf("empty list")
}
operator := &ast.ExprStr{
V: "+", // for PLUS this is a `+` character
}
if len(exprs) == 1 {
return exprs[0], nil // just return self
}
//if len(exprs) == 1 {
// arg := exprs[0]
// emptyStr := &ast.ExprStr{
// V: "", // empty str
// }
// return &ast.ExprCall{
// Name: funcs.OperatorFuncName, // concatenate the two strings with + operator
// Args: []interfaces.Expr{
// operator, // operator first
// arg, // string arg
// emptyStr,
// },
// }, nil
//}
head, tail := exprs[0], exprs[1:]
grouped, err := concatExprListIntoCall(tail)
if err != nil {
return nil, err
}
return &ast.ExprCall{
// NOTE: if we don't set the data field we need Init() called on it!
Name: funcs.OperatorFuncName, // concatenate the two strings with + operator
Args: []interfaces.Expr{
operator, // operator first
head, // string arg
grouped, // nested function call which returns a string
},
}, nil
}
// simplifyExprList takes a list of *ExprStr and *ExprVar and groups the
// sequential *ExprStr's together. If you pass it a list of Expr's that contains
// a different type of Expr, then this will error.
func simplifyExprList(exprs []interfaces.Expr) ([]interfaces.Expr, error) {
last := false
result := []interfaces.Expr{}
for _, x := range exprs {
switch v := x.(type) {
case *ast.ExprStr:
if !last {
last = true
result = append(result, x)
continue
}
// combine!
expr := result[len(result)-1] // there has to be at least one
str, ok := expr.(*ast.ExprStr)
if !ok {
// programming error
return nil, fmt.Errorf("unexpected type (%T)", expr)
}
str.V += v.V // combine!
//last = true // redundant, it's already true
// ... and don't append, we've combined!
case *ast.ExprVar:
last = false // the next one can't combine with me
result = append(result, x)
default:
return nil, fmt.Errorf("unsupported type (%T)", x)
}
}
return result, nil
}