lang: funcs: Move standalone functions into core

Everything should be all together.
This commit is contained in:
James Shubin
2024-11-21 22:56:17 -05:00
parent b40d10a366
commit 018d3efc90
15 changed files with 58 additions and 28 deletions

338
lang/core/struct_lookup.go Normal file
View File

@@ -0,0 +1,338 @@
// Mgmt
// Copyright (C) 2013-2024+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
package core
import (
"context"
"fmt"
"github.com/purpleidea/mgmt/lang/funcs"
"github.com/purpleidea/mgmt/lang/interfaces"
"github.com/purpleidea/mgmt/lang/types"
"github.com/purpleidea/mgmt/util/errwrap"
)
const (
// StructLookupFuncName is the name this function is registered as. This
// starts with an underscore so that it cannot be used from the lexer.
StructLookupFuncName = funcs.StructLookupFuncName
// arg names...
structLookupArgNameStruct = "struct"
structLookupArgNameField = "field"
)
func init() {
funcs.Register(StructLookupFuncName, func() interfaces.Func { return &StructLookupFunc{} }) // must register the func and name
}
var _ interfaces.BuildableFunc = &StructLookupFunc{} // ensure it meets this expectation
// StructLookupFunc is a struct field lookup function.
type StructLookupFunc struct {
Type *types.Type // Kind == Struct, that is used as the struct we lookup
Out *types.Type // type of field we're extracting
built bool // was this function built yet?
init *interfaces.Init
last types.Value // last value received to use for diff
field string
result types.Value // last calculated output
}
// String returns a simple name for this function. This is needed so this struct
// can satisfy the pgraph.Vertex interface.
func (obj *StructLookupFunc) String() string {
return StructLookupFuncName
}
// ArgGen returns the Nth arg name for this function.
func (obj *StructLookupFunc) ArgGen(index int) (string, error) {
seq := []string{structLookupArgNameStruct, structLookupArgNameField}
if l := len(seq); index >= l {
return "", fmt.Errorf("index %d exceeds arg length of %d", index, l)
}
return seq[index], nil
}
// helper
func (obj *StructLookupFunc) sig() *types.Type {
st := "?1"
out := "?2"
if obj.Type != nil {
st = obj.Type.String()
}
if obj.Out != nil {
out = obj.Out.String()
}
return types.NewType(fmt.Sprintf(
"func(%s %s, %s str) %s",
structLookupArgNameStruct, st,
structLookupArgNameField,
out,
))
}
// FuncInfer takes partial type and value information from the call site of this
// function so that it can build an appropriate type signature for it. The type
// signature may include unification variables.
func (obj *StructLookupFunc) FuncInfer(partialType *types.Type, partialValues []types.Value) (*types.Type, []*interfaces.UnificationInvariant, error) {
// func(struct ?1, field str) ?2
// This particular function should always get called with a known string
// for the second argument. Without it being known statically, we refuse
// to build this function.
if l := 2; len(partialValues) != l {
return nil, nil, fmt.Errorf("function must have %d args", l)
}
if err := partialValues[1].Type().Cmp(types.TypeStr); err != nil {
return nil, nil, errwrap.Wrapf(err, "function field name must be a str")
}
s := partialValues[1].Str() // must not panic
if s == "" {
return nil, nil, fmt.Errorf("function must not have an empty field name")
}
// This can happen at runtime too, but we save it here for Build()!
obj.field = s // store for later
// Figure out more about the sig if any information is known statically.
if len(partialType.Ord) > 0 && partialType.Map[partialType.Ord[0]] != nil {
obj.Type = partialType.Map[partialType.Ord[0]] // assume this
if obj.Type.Kind == types.KindStruct && obj.Type.Map != nil {
if typ, exists := obj.Type.Map[s]; exists {
obj.Out = typ
}
}
}
// This isn't precise enough because we must guarantee that the field is
// in the struct and that ?1 is actually a struct, but that's okay it is
// something that we'll verify at build time!
return obj.sig(), []*interfaces.UnificationInvariant{}, nil
}
// Build is run to turn the polymorphic, undetermined function, into the
// specific statically typed version. It is usually run after Unify completes,
// and must be run before Info() and any of the other Func interface methods are
// used. This function is idempotent, as long as the arg isn't changed between
// runs.
func (obj *StructLookupFunc) Build(typ *types.Type) (*types.Type, error) {
// typ is the KindFunc signature we're trying to build...
if typ.Kind != types.KindFunc {
return nil, fmt.Errorf("input type must be of kind func")
}
if len(typ.Ord) != 2 {
return nil, fmt.Errorf("the structlookup function needs exactly two args")
}
if typ.Out == nil {
return nil, fmt.Errorf("return type of function must be specified")
}
if typ.Map == nil {
return nil, fmt.Errorf("invalid input type")
}
tStruct, exists := typ.Map[typ.Ord[0]]
if !exists || tStruct == nil {
return nil, fmt.Errorf("first arg must be specified")
}
tField, exists := typ.Map[typ.Ord[1]]
if !exists || tField == nil {
return nil, fmt.Errorf("second arg must be specified")
}
if err := tField.Cmp(types.TypeStr); err != nil {
return nil, errwrap.Wrapf(err, "field must be an str")
}
// NOTE: We actually don't know which field this is yet, only its type!
// We cached the discovered field during Infer(), but it turns out it's
// not actually necessary for us to know it to build the struct. It is
// needed to make sure the lossy Infer unification variables are right.
if tStruct.Kind != types.KindStruct {
return nil, fmt.Errorf("first arg must be of kind struct, got: %s", tStruct.Kind)
}
if obj.field == "" {
// programming error
return nil, fmt.Errorf("did not infer correctly")
}
ix := -1 // not found
for i, x := range tStruct.Ord {
if x != obj.field {
continue
}
// found
if ix != -1 {
// programming error
return nil, fmt.Errorf("duplicate field found")
}
ix = i // found it here!
//break // keep checking for extra safety
}
if ix == -1 {
return nil, fmt.Errorf("field %s was not found in struct", obj.field)
}
tF, exists := tStruct.Map[tStruct.Ord[ix]]
if !exists {
return nil, fmt.Errorf("field %s was not found in struct", obj.field)
}
// The return value must match the type of the field we're pulling out!
if err := typ.Out.Cmp(tF); err != nil {
return nil, fmt.Errorf("field %s type error: %+v", obj.field, err)
}
obj.Type = tStruct // struct type
obj.Out = typ.Out // type of return value
obj.built = true
return obj.sig(), nil
}
// Copy is implemented so that the obj.field value is not lost if we copy this
// function. That value is learned during FuncInfer, and previously would have
// been lost by the time we used it in Build.
func (obj *StructLookupFunc) Copy() interfaces.Func {
return &StructLookupFunc{
Type: obj.Type, // don't copy because we use this after unification
Out: obj.Out,
built: obj.built,
init: obj.init, // likely gets overwritten anyways
field: obj.field, // this we really need!
}
}
// Validate tells us if the input struct takes a valid form.
func (obj *StructLookupFunc) Validate() error {
if !obj.built {
return fmt.Errorf("function wasn't built yet")
}
if obj.Type == nil { // build must be run first
return fmt.Errorf("type is still unspecified")
}
if obj.Type.Kind != types.KindStruct {
return fmt.Errorf("type must be a kind of struct")
}
if obj.Out == nil {
return fmt.Errorf("return type must be specified")
}
for _, t := range obj.Type.Map {
if obj.Out.Cmp(t) == nil {
return nil // found at least one match
}
}
return fmt.Errorf("return type is not in the list of available struct fields")
}
// Info returns some static info about itself. Build must be called before this
// will return correct data.
func (obj *StructLookupFunc) Info() *interfaces.Info {
// Since this function implements FuncInfer we want sig to return nil to
// avoid an accidental return of unification variables when we should be
// getting them from FuncInfer, and not from here. (During unification!)
var sig *types.Type
if obj.built {
sig = obj.sig() // helper
}
return &interfaces.Info{
Pure: true,
Memo: false,
Sig: sig,
Err: obj.Validate(),
}
}
// Init runs some startup code for this function.
func (obj *StructLookupFunc) Init(init *interfaces.Init) error {
obj.init = init
return nil
}
// Stream returns the changing values that this func has over time.
func (obj *StructLookupFunc) Stream(ctx context.Context) error {
defer close(obj.init.Output) // the sender closes
for {
select {
case input, ok := <-obj.init.Input:
if !ok {
return nil // can't output any more
}
//if err := input.Type().Cmp(obj.Info().Sig.Input); err != nil {
// return errwrap.Wrapf(err, "wrong function input")
//}
if obj.last != nil && input.Cmp(obj.last) == nil {
continue // value didn't change, skip it
}
obj.last = input // store for next
st := (input.Struct()[structLookupArgNameStruct]).(*types.StructValue)
field := input.Struct()[structLookupArgNameField].Str()
if field == "" {
return fmt.Errorf("received empty field")
}
if obj.field == "" {
// This can happen at compile time too. Bonus!
obj.field = field // store first field
}
if field != obj.field {
return fmt.Errorf("input field changed from: `%s`, to: `%s`", obj.field, field)
}
result, exists := st.Lookup(obj.field)
if !exists {
return fmt.Errorf("could not lookup field: `%s` in struct", field)
}
// if previous input was `2 + 4`, but now it
// changed to `1 + 5`, the result is still the
// same, so we can skip sending an update...
if obj.result != nil && result.Cmp(obj.result) == nil {
continue // result didn't change
}
obj.result = result // store new result
case <-ctx.Done():
return nil
}
select {
case obj.init.Output <- obj.result: // send
case <-ctx.Done():
return nil
}
}
}